Abstract:
A scanning electron microscopy system is disclosed. The system includes a multi-beam scanning electron microscopy (SEM) sub-system. The SEM sub-system includes a multi-beam electron source configured to form a plurality of electron beams, a sample stage configured to secure a sample, an electron-optical assembly to direct the electron beams onto a portion of the sample, and a detector assembly configured to simultaneously acquire multiple images of the surface of the sample. The system includes a controller configured to receive the images from the detector assembly, identify a best focus image of images by analyzing one or more image quality parameters of the images, and direct the multi-lens array to adjust a focus of one or more electron beams based on a focus of an electron beam corresponding with the identified best focus image.
Abstract:
A system for inspecting a constant layer depth relative to a particular device layer. The system has an image sensor with a fixed focal plane. A focus sensor senses the surface topography of the substrate and outputs a focus data stream. A stage moves the substrate in an XY plane, and a motor moves the substrate in a Z dimension. A controller operates the system in one of a setup mode and an inspection mode. In the setup mode the controller controls XY movement of the substrate so as to scan a first portion of the substrate. The controller receives the focus data stream, concurrently receives XY data, and stores correlated XYZ data for the substrate. In the inspection mode the controller controls XY movement of the substrate so as to scan a second portion of the substrate. The controller receives the focus data stream, concurrently receives XY data, and subtracts the stored Z data from the focus data stream to produce a virtual data stream. The controller feeds the virtual data stream plus an offset to the motor for moving the substrate up and down during the inspection, thereby holding the focal plane at a desired Z distance, regardless of the surface topography of the substrate.
Abstract:
Disclosed are methods and apparatus for detecting defects or reviewing defects in a semiconductor sample. The system has a brightfield (BF) module for directing a BF illumination beam onto a sample and detecting an output beam reflected from the sample in response to the BF illumination beam. The system has a modulated optical reflectance (MOR) module for directing a pump and probe beam to the sample and detecting a MOR output beam from the probe spot in response to the pump beam and the probe beam. The system includes a processor for analyzing the BF output beam from a plurality of BF spots to detect defects on a surface or near the surface of the sample and analyzing the MOR output beam from a plurality of probe spots to detect defects that are below the surface of the sample.