Abstract:
A lithography system includes an illumination source and a set of projection optics. The illumination source directs a beam of illumination from an off-axis illumination pole to a pattern mask. The pattern mask includes a set of pattern elements to generate a set of diffracted beams including illumination from the illumination pole. At least two diffracted beams of the set of diffracted beams received by the set of projection optics are asymmetrically distributed in a pupil plane of the set of projection optics. The at least two diffracted beams of the set of diffracted beams are asymmetrically incident on the sample to form a set of fabricated elements corresponding to an image of the set of pattern elements. The set of fabricated elements on the sample includes one or more indicators of a location of the sample along an optical axis of the set of projection optics.
Abstract:
A system, method and computer program product are provided for calibrating metrology tools. One or more design-of-experiments wafers is received for calibrating a metrology tool. A set of signals is collected by measuring the one or more wafers utilizing the metrology tool. A first transformation is determined to convert the set of signals to components, and a second transformation is determined to convert a set of reference signals to reference components. The set of reference signals is collected by measuring the one or more wafers utilizing a well-calibrated reference tool. A model is trained based on the reference components that maps the components to converted components, and the model, first transformation, and second transformation are stored in a memory associated with the metrology tool.