OUTPUT SIGNAL-TO-NOISE WITH MINIMAL LAG EFFECTS USING INPUT-SPECIFIC AVERAGING FACTORS
    1.
    发明申请
    OUTPUT SIGNAL-TO-NOISE WITH MINIMAL LAG EFFECTS USING INPUT-SPECIFIC AVERAGING FACTORS 审中-公开
    使用输入特定平均因子的输出信号到最小化效应的噪声

    公开(公告)号:US20150339262A1

    公开(公告)日:2015-11-26

    申请号:US14282780

    申请日:2014-05-20

    CPC classification number: G06F17/10 G01J3/28 G01J3/44 G06F17/18

    Abstract: Raw data inputs are treated as independent signal sources to reduce computational lag without adversely affecting signal-to-noise ratio (SNR). Applications include spectroscopy, multiple linear regression, mass balance quantitation and the calculation of physical properties. The input-specific averaging has been applied to Raman spectroscopy, where the inputs are averaged spectra from which peak heights or areas are obtained from integration. Alternatively, peak areas or heights can be obtained from unaveraged spectra and are then averaged before use in further calculations as inputs to produce a desired output. The output(s) are linear or nonlinear combinations of the peak heights or areas, coupled with weighting factors which relate the raw inputs to a quantitative output such as concentration of a chemical species. Each specific input can use a different type of averaging. The overall goal may be optimization for best precision, and/or optimization for minimum lag time.

    Abstract translation: 原始数据输入被视为独立信号源,以减少计算滞后,而不会不利地影响信噪比(SNR)。 应用包括光谱学,多元线性回归,质量平衡定量和物理性质的计算。 输入特异性平均已经应用于拉曼光谱,其中输入是从积分获得峰高或区域的平均光谱。 或者,可以从未平整光谱获得峰面积或高度,然后在进一步计算之前对其进行平均,作为输出以产生期望的输出。 输出是峰值高度或面积的线性或非线性组合,以及将原始输入与定量输出(例如化学物质的浓度)相关联的加权因子。 每个具体的输入可以使用不同类型的平均值。 总体目标可能是优化最佳精度,和/或优化最小滞后时间。

Patent Agency Ranking