Abstract:
A motion capture system includes a motion sensor having a flexible body and a fiber bragg gratings (FBG) sensor inserted into the body, a fixture configured to fix the motion sensor to a human body of a user, a light source configured to irradiate light to the motion sensor, and a measurer configured to analyze a reflected light output from the motion sensor, wherein the FBG sensor includes an optical fiber extending along a longitudinal direction of the body and a sensing unit formed in a partial region of the optical fiber and having a plurality of gratings, and wherein a change of a wavelength spectrum of the reflected light, caused by the change of an interval of the gratings due to a motion of the user, is detected to measure a motion state of the user.
Abstract:
A probe insertion device for a neural probe structure with a plurality of probes to simultaneously insert the plurality of probes into a nerve includes a nerve holder to fix the nerve surrounding an outer circumference of the nerve, and a probe holder positioned outside in a radial direction of the nerve holder to fixedly support the probes surrounding a circumference of the nerve holder. The probe holder includes a plurality of sections (“probe holder sections”) arranged radially with respect to the nerve holder and moveable in a radial direction of the nerve holder, and the plurality of probe holder sections simultaneously moves the plurality of probes toward the nerve holder having fixed the nerve, so that the plurality of probes is simultaneously inserted into the nerve in a radial shape when viewed in a lengthwise direction of the nerve.
Abstract:
A neural probe structure includes a probe which is inserted into a living body, and a magnetic field inductor which is formed in the probe, wherein when a power source is supplied, the magnetic field inductor generates a magnetic field and applies magnetic stimulation to a target site of the living body into which the probe is inserted. A method for manufacturing the neural probe structure includes forming a first pattern on a first substrate and filling the first pattern with a conductor, stacking a second substrate on the first substrate, and forming a second pattern connected to the first pattern on the second substrate and filling the second pattern with a conductor, wherein the first substrate and the second substrate form the probe, and the conductor of the first pattern and the conductor of the second pattern form the magnetic field inductor.
Abstract:
A nerve probe array has a connector made of a flexible material; and a plurality of probes coupled to the connector, each of the plurality of probe having an electrode formed at a body thereof. The plurality of probes are arranged with intervals in a length direction of the connector, and the connector surrounds an outer circumference of a nerve, and the plurality of probes pierce the outer circumference of the nerve and are inserted into the nerve.
Abstract:
Disclosed embodiments aim to provide an apparatus and method for three-dimensional navigation of a medical tool that enables identifying the three-dimensional shape and position of the medical tool within a human body. To achieve the above object, the disclosed embodiment includes a three-dimensional high-resolution image acquisition unit configured to acquire a three-dimensional high-resolution image of a human organ that is targeted for a medical procedure; a three-dimensional shape data acquisition unit configured to acquire three-dimensional shape data of a medical tool of a flexible material in real time; a registration unit configured to register the three-dimensional high-resolution image and the three-dimensional shape data with a reference point; and a display unit configured to display an image registered by the registration unit.
Abstract:
Provided is a neural probe array including a probe which is insertable into a nerve, the probe having a microchannel which induces the regeneration of the nerve, wherein an electrode is installed within the microchannel and is physically isolated from gliosis, and the microchannel is configured to receive a nerve growth factor for regenerating the nerve, and when the probe is inserted into the nerve, the electrode physically isolated from gliosis accomplishes neural signal acquisition and stimulation.
Abstract:
A motion capture system includes a motion sensor having a flexible body and a fiber bragg gratings (FBG) sensor inserted into the body, a fixture configured to fix the motion sensor to a human body of a user, a light source configured to irradiate light to the motion sensor, and a measurer configured to analyze a reflected light output from the motion sensor, wherein the FBG sensor includes an optical fiber extending along a longitudinal direction of the body and a sensing unit formed in a partial region of the optical fiber and having a plurality of gratings, and wherein a change of a wavelength spectrum of the reflected light, caused by the change of an interval of the gratings due to a motion of the user, is detected to measure a motion state of the user.
Abstract:
A stimulation apparatus using low intensity focused ultrasound, which has a low intensity ultrasound focusing array having a plurality of transducers for outputting low intensity ultrasound beams, and a fixing device to which the low intensity ultrasound focusing array is attached, the fixing device being configured to fix the low intensity ultrasound focusing array to an upper body of a user. The low intensity ultrasound beams outputted from the transducers are focused to at least one focus. The focus is positioned to a spinal cord of the user or nerves around the spinal cord so that low intensity ultrasound stimulation is applied to the spinal cord or nerve cells of the nerves around the spinal cord.
Abstract:
Embodiments relate to an IMU sensor and an inertial measurement system comprising same, wherein the IMU sensor comprises: a core body including at least three surfaces each having a surface direction parallel to any one of three axes; a plurality of cantilevers configured to be deformable, one side of each cantilever being coupled to the core body; and a plurality of strain sensors each disposed on the surface of each cantilever, the strain sensors extending along the direction of the other side from one fixed side of the cantilever.
Abstract:
A neural tube capable of complexly playing roles of a support for regenerating a nerve and a nerve electrode has a support connected to a terminal of an injured nerve, and a sieve electrode having an electrode hole formed in a body thereof and a circular electrode formed around the electrode hole, wherein the body of the sieve electrode is buried in the support, wherein a cavity-type channel is formed at the support to extend to the inside of the support, wherein the electrode hole is aligned with the channel, and wherein a nerve cell growing along the channel at the terminal of the injured nerve is capable of contacting the circular electrode.