Abstract:
An optical element includes a multicore optical fiber, the multicore optical fiber including an inner core and at least one peripheral core arranged around the inner core and having an effective refractive index different from that of the inner core, and an optical fiber grating formed at the multicore optical fiber to cause an optical signal to be coupled between different cores among the inner core and the at least one peripheral core. The optical element allows a signal of a specific wavelength to be dropped added from an optical signal. Since the optical element may be fabricated easily, designed in a small size and mass-produced reproducibly at low costs, the optical element may be advantageously utilized for an optical communication network such as a wavelength division multiplexing network, an ultra-high speed optical communication system, an optical sensor system or the like.
Abstract:
Embodiments relate to a Brillouin distributed optical fiber sensor including a first light source to output a first light having a modulated intensity at a preset frequency, an optical modulation unit to generate Brillouin probe light and Brillouin pump light using the first light and apply the Brillouin probe light and the Brillouin pump light to one end and the other end of a test optical fiber, respectively, a second light source to apply a second light with a frequency that is different from a frequency of the first light to one end of the test optical fiber in a direction opposite to the Brillouin pump light, and an optical detection unit to detect Brillouin scattered light generated by interaction between the Brillouin pump light and the Brillouin probe light in the test optical fiber.
Abstract:
Embodiments relate to a dual Brillouin distributed optical fiber sensing system and a sensing method using Brillouin scattering that detects an event area in which an event occurred quickly by simultaneously measuring multiple correlation points located in an optical fiber under test by using a pump signal modulated with a pulsed gating signal and a continuous wave probe signal, and then precisely measures the corresponding event area by using the probe signal modulated with the pulsed gating signal and the pump signal.
Abstract:
An optical element includes a multicore optical fiber, the multicore optical fiber including an inner core and at least one peripheral core arranged around the inner core and having an effective refractive index different from that of the inner core, and an optical fiber grating formed at the multicore optical fiber to cause an optical signal to be coupled between different cores among the inner core and the at least one peripheral core. The optical element allows a signal of a specific wavelength to be dropped added from an optical signal. Since the optical element may be fabricated easily, designed in a small size and mass-produced reproducibly at low costs, the optical element may be advantageously utilized for an optical communication network such as a wavelength division multiplexing network, an ultra-high speed optical communication system, an optical sensor system or the like.