Abstract:
A method of producing self-supporting ceramic structures (12) comprising (i) a polycrystalline oxidation reaction product formed upon oxidation of a molten parent metal (14) with an oxidant, and (ii) interconnected porosity (13) at least partially accessible from one or more surfaces (15) of said ceramic body. A second polycrystalline ceramic material is incorporated into the porosity of said ceramic body to modify or contribute to its properties.
Abstract:
There is disclosed a method for producing a self-supporting ceramic body by oxidation of a molten precursor metal with a vapor-phase oxidant to form an oxidation reaction product and inducing a molten flux comprising said molten precursor metal through said oxidation reaction product. A second metal is incorporated i said molten flux during the oxidation reaction. The resulting ceramic body includes sufficient second metal such that one or more properties of said ceramic body are at least partially affected by the presence and properties of said second metal.
Abstract:
The invention relates to a method for producing ceramic composites obtained by oxidation of an aluminum parent metal to form a polycrystalline ceramic material by providing a filler having a coating of a silicon source on at least a portion of said filler different in composition from the primary composition of said filler, said silicon source possessing intrinsic doping properties. A body of molten parent metal, adjacent a mass of the filler material, reacts with an oxidant to form an oxidation reaction product which infiltrates the adjacent mass of filler thereby forming the ceramic composite.
Abstract:
A method is disclosed for producing a ceramic body by oxidation of a parent metal, the ceramic body having a graded microstructure characterized by a plurality of zones differing from each other in one or more properties. The zones in the ceramic body are attained by altering the process conditions during formation of said ceramic body such that a zone of the oxidation reaction product formed posterior to said altering has one or more properties different from a zone of the oxidation reaction product formed anterior to said altering.