Abstract:
In some embodiments a scanning method for deriving information about surfaces of objects for a surveying system is disclosed. In some embodiments, the surveying system may include a control and evaluation unit with scanning functionality, such as, for example, a laser scanner or a total station. In some embodiments, the recorded point set of the detected object points is kept available in a volatile memory of the control and evaluation unit and by means of the control and evaluation unit as part of the scanning process an adaptation of the recorded point set is effected depending on at least one point density of the recorded point set. The adapted point set generated thereby, with loss of the recorded point set, is stored in a permanent memory.
Abstract:
A method for ascertaining a suitable deployment of a mobile measuring device within measurement surroundings, wherein first and second measurement surroundings containing first and second object features are automatically optically captured at the first deployment and tracked using a visual inertial system (VIS) and within the scope of changing the deployment. The first and second measurement surroundings are compared, wherein the comparison is based on searching for corresponding first and second object features visible in a certain number and quality in the first and second measurement surroundings, wherein this certain number and quality of corresponding features is a criterion that a registration of the first and second point cloud is possible.
Abstract:
Method for visually representing scanning data, which are composed of a multiplicity of individual measurement data. The individual measurement data in each case have at least one measurement value that is linked to a respective measurement direction, wherein the measurement directions are different from one another such that a predetermined scanning region with a predetermined scanning resolution is covered. The representation of the scanning data is effected by way of an image map with a number of map points that is dependent on a predetermined display resolution and by way of an assignment rule for assigning measurement value to map point, wherein the assignment is effected immediately on the basis of the respective measurement direction that is linked to the measurement value.
Abstract:
A geodetic surveying instrument to move a measurement light beam into a desired measurement direction in space, comprising at least one movement axis which is motorized, providing a positioning of the measurement direction of the geodetic surveying instrument, and an instrument-encoder at the movement axis configured for deriving the measurement direction as a measurement value of the geodetic surveying instrument. The geodetic surveying instrument comprises a transmission link of the movement axis of the geodetic surveying instrument to a motor axis of a stepper motor, which transmission link is configured with a gear reduction and a slipping clutch arrangement, and wherein the stepper motor comprises a rotational motor-encoder on its motor-axis and is driven by a motor controller that provides a field oriented control of phase currents of the stepper motor, which field orientation is derived based on the rotational motor-encoder.
Abstract:
A method for processing scan data which are recorded by a measuring device with a scan functionality, wherein a reduced scan data record is created from a recorded scan data record with a first scan data density by selecting individual scan data points. Here, the selection represents an adaptation to a reduced scan data density, which is less than the first scan data density of the recorded scan data record. The reduced scan data density depends on a predetermined display resolution for displaying scan data. The reduced scan data record is transmitted to an external data processing device and displayed by the latter by means of a display, depending on the predetermined display resolution.
Abstract:
Some embodiments of the invention include a surveying apparatus that includes an optoelectronic distance measuring device having a measuring beam path, a base for placing the surveying apparatus, a support which is mounted on the base such that it is rotatable about a vertical axis, a beam directing unit which is mounted in the support such that it is rotatable about a tilting axis, an angle measurement system for measuring the axial positions, and an actuatable positioning device driving the beam directing unit or the support. In some embodiments the positioning device may include a plurality of coils which are arranged in a positionally fixed manner in the form of a ring about the tilting axis and/or vertical axis, with winding axes which are axially parallel to the tilting axis or vertical axis.
Abstract:
Automatic method for coordinative measuring of a measurement space with a stationary terrestrial scanning measuring device having an emitting unit for directed emission of radiation as a free beam and at least one camera arranged in known spatial relationship to the emitting unit.
Abstract:
A laser scanner comprising a base, a body, a first motor for rotating the body relative to the base at a first speed, a first angle encoder determining a first angle of the body, an emitter emitting a transmission beam, a receiver detecting a reception beam, a deflector deflecting the transmission beam towards a setting, deflecting the reception beam to the receiver, a second motor rotating at a second speed higher than the first speed, a second angle encoder determining a second angle of the deflector, a processor determining a distance based on the emitted transmission beam and the detected reception beam, determining a point based on the first angle, the second angle, and the determined distance. The processor determines first calibration points and second calibration points, a first deviation based on the first calibration points the second calibration points, and based on the first deviation, determining first calibration parameters.