Abstract:
PROBLEM TO BE SOLVED: To provide a method and apparatus for identifying and correcting spherical aberrations in a microscope imaging beam path.SOLUTION: There is provided a method for identifying a spherical error of a microscope imaging beam path (7) in a context of microscopic imaging of a sample (9) using a microscope (1) having an objective (10) and a coverslip (2) which carries or covers the sample (9) placed in the imaging beam path. A measurement beam (130) is guided in decentered fashion, outside an optical axis (8) of the objective (10), through the objective (10) onto the sample (9). A measurement beam (132) reflected at an interface (116) between the sample (9) and the coverslip is guided through the objective (10) onto a detector (128). The detector (128) acquires an intensity profile of the reflected measurement beam (132), and the presence of a spherical error is determined qualitatively and/or quantitatively from the intensity profile.
Abstract:
PROBLEM TO BE SOLVED: To provide a tube to be adapted to a microscope having an adaptable interface (2), an operator interface (3) arranged to be rotated, a beam refracting device (4) and a beam refracting unit (5) arranged to be rotated. SOLUTION: As for the tube, a light beam coming from the adaptable interface (2) is refracted toward the beam refracting unit (5) arranged to be rotated by using the beam refracting device (4), and the rotation of the operator interface (3) is forcibly coupled with the rotation of the unit (5) arranged to be rotated. In the tube, the device (4) is equipped with a beam splitting assembly (6) in order to utilize a documentation interface (11). COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a simple microscope illumination unit which ensures proper visual field and pupil illumination, in a standard range (10× to 100×), a scan range (1.6× to 5×), and a macrorange (1× to 1.6×). SOLUTION: The transmitted light illuminator of the microscope has the scheme, in which an illumination light from a light source prescribes the illumination optical axis, and is incident on the surface of a sample via a contact lens, a stop for field vision, and an aperture diaphragm. The transmissive illuminator includes a single condenser lens 5, which is constituted so as to be capable of being inserted/removed and a focusing lens 8, which is disposed between the field stop 4 and the aperture diaphragm 3 and which can slide along the illumination optical axis. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide a microscope including a macro and a micro objective.SOLUTION: The microscope includes an objective turret 14 which holds at least one micro objective 15 and a macro objective 5 comprising a plurality of optical subsystems 5a, 5b, and incident illumination device 20 which can be inserted into an imaging beam path 29 between the objective lens turret 14 and an observation optical device 9, and includes a beam splitter 12 for coupling an illumination beam path 28 to the imaging beam path 29. The incidence illumination device 20 includes an adjustment optical device 2 which is inserted when the macro objective 5 is rotated to its operation position, and has positive refracting power, and the adjustment optical device 2 shifts an illumination pupil to that for the macro objective 5 to light up an objective 6 telecentrically through both the micro objective lens 15 and the macro objective 5 as the alternative.
Abstract:
PROBLEM TO BE SOLVED: To constitute a scanning microscope so that, above all, it can be adjusted very easily. SOLUTION: The scanning microscope or a raster microscope has a system, provided with a scan head (2) having a scanner (1) for a light beam and a scanning barrel lens (3), where the scanning barrel lens (3) is coupled to the scanning head (2). COPYRIGHT: (C)2006,JPO&NCIPI
Abstract:
PROBLEM TO BE SOLVED: To provide and develop a tube of such a kind that the interval from the operator of a microscope to the microscope can be changed in a specified direction while an observing angle is maintained. SOLUTION: The tube to be adapted to the microscope has a tube housing (3), an adaptable interface (4), a beam diffracting unit (5), a further beam guiding means (7) and an operator interface (8). A light beam coming from the interface (4) is refracted by the unit (5) so that its optical axis (6) is at least locally extended on a specified surface substantially, and guided to the interface (8) by the guiding means (7). The housing (3) is constituted to move relatively in a direction parallel with a specified surface with respect to the microscope (2) together with the guiding means (7) and the interface (8) in order to maintain the observing angle, while the interval from the interface (8) to the microscope is changed in the specified direction. COPYRIGHT: (C)2004,JPO&NCIPI
Abstract:
The invention relates to an ergonomic tube (30) for a microscope (1). A binocular head (20) is provided on the tube (30). A deflection element (15) is provided in the tube (30) and a deflection mirror (18) is assigned to said element, the mirror (18) being located behind the optical path (5) of the lens, when viewed from the user's (17) position. A single tube-lens system (11) is positioned in the optical path (16) of the tube. A modification to the inclination of the ocular optical path (21) in relation to the horizontal (H) by a value alpha causes the position of the deflection mirror (18) to be modified by an angle alpha /2.
Abstract:
PCT No. PCT/DE95/00160 Sec. 371 Date Oct. 6, 1995 Sec. 102(e) Date Oct. 6, 1995 PCT Filed Feb. 8, 1995 PCT Pub. No. WO95/22072 PCT Pub. Date Aug. 17, 1995An exchangeable condenser system for a phase-contrast illuminating system (12) for microscopes has a plurality of different light rings (5), arranged on a nosepiece plate (4), assigned to the condenser optical system (6). The condenser optical system (6) can be exchanged independently of the light rings (5), the focal lengths Fn of the exchangeable condenser optical systems (6) being selected relative to one another in the ratio Fn=F0*Xn and the average diameters Dn of the light rings (5) being selected relative to one another in the ratio Dn=D0*Xn, where X>0, n=0,1,2,3, . . . .
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Feststellung eines sphärischen Fehlers eines Mikroskop-Abbildungsstrahlengangs (7) bei einer mikroskopischen Abbildung einer Probe (9) mittels eines ein Objektiv (10) aufweisenden Mikroskops (1), wobei ein die Probe (9) tragendes oder bedeckendes Deckglas (2) im Abbildungsstrahlengang angeordnet ist, wobei ein Messstrahl (130) dezentriert außerhalb der optischen Achse (8) des Objektivs (10) durch das Objektiv (10) auf die Probe (9) und der an der Grenzfläche (116) des Deckglases zur Probe (9) reflektierte Messstrahl (132) über das Objektiv (10) auf einen Detektor (128) geleitet wird, der das Intensitätsprofil des reflektierten Messstrahls (132) aufnimmt, und wobei aus diesem Intensitätsprofil das Vorliegen eines sphärischen Fehlers qualitativ und/oder quantitativ bestimmt wird.
Abstract:
Die vorliegende Erfindung betrifft ein Mikroskop (18) mit einem Objektivrevolver (14) zur Befestigung von mindestens einem Mikro-Objektiv (15), das in eine Arbeitsstellung auf eine optischen Achse (3) einschwenkbar ist, mit einer Beobachtungsoptik (9) in einem Abbildungsstrahlengang (29) und mit einem Makro-Objektiv (5) bestehend aus mehreren optischen Teilsystemen (5a, 5b), wobei ein erstes optisches Teilsystem (5a) am Objektivrevolver (14) befestigbar ist und ein zweites optisches Teilsystem (5b) zwischen dem Objektivrevolver (14) und der Beobachtungsoptik (9) in den Abbildungsstrahlengang (29) einfügbar ist, wobei eine einen telezentrischen Beleuchtungsstrahlengang (28) erzeugende Auflichtbeleuchtungseinrichtung (20) mit einem Strahlteiler (12) zur Einkopplung des Beleuchtungsstrahlengangs (28) in den Abbildungsstrahlengang (29) vorgesehen ist, mit der sowohl durch ein in seiner Arbeitsstellung befindliches Mikro-Objektiv (15) als auch alternativ durch das in seiner Arbeitsstellung befindliche erste optische Teilsystem (5a) des Makro-Objektivs (5) jeweils ein Beleuchtungsstrahlengang (28) mit einer objektivseitigen Beleuchtungspupille (26) erzeugbar ist, und wobei bei dem in seiner Arbeitsstellung befindlichen Makro-Objektiv (5) eine Anpassungsoptik (2) positiver Brechkraft in den Beleuchtungsstrahlengang (28) einbringbar ist, welche die Beleuchtungspupille (26) an die hintere Austrittspupille (27) des Makro-Objektivs (5) verlagert, die zwischen dem ersten optischen Teilsystem (5a) und dem Strahlteiler (12) liegt.