Abstract:
A microscope includes a light source(s) which produce an illumination beam path comprising light in a plurality of wavelength regions. A dichroic beam splitter arrangement having a dichroic mirror surface is arranged between objective optics and a tube lens in a beam path portion to produce a reflected partial beam and a transmitted partial beam. The beam splitter arrangement changes a propagation direction of the reflected partial beam relative to the illumination beam path by a specified deflection angle. The mirror surface is arranged at an angle of 22.5±7.5°. The beam splitter arrangement includes a further mirror(s) arranged in the reflected beam path. The propagation direction of the reflected partial beam is changed by the specified deflection angle using the sum of all reflections on the mirror surface and the further mirror(s).
Abstract:
A method and apparatus provide identification of a spherical error of a microscope imaging beam path in a context of microscopic imaging of a sample using a microscope having an objective. A coverslip that carries or covers the sample is arranged in the imaging beam path. A measurement beam is guided through the objective onto the sample in a decentered fashion that is outside an optical axis of the objective. The measurement beam is reflected at an interface of the coverslip with the sample and the reflected measurement beam is guided through the objective onto a detector. An intensity profile of the reflected measurement beam is detected with the detector and a presence of a spherical error from the intensity profile is determined qualitatively and/or quantitatively.
Abstract:
An objective and an illumination unit for selectable generation of an orthoscopic beam path proceeding through the objective for pointlike scanning illumination, and of a conoscopic beam path proceeding through the objective for evanescent illumination of an object are disclosed. The illumination unit has a light source for generating illuminating rays along an illuminating beam path; a displacement unit for deflecting the illuminating beam path; a scanning eyepiece, placed after the displacement unit for focusing the illuminating rays into an image plane of the scanning eyepiece; and a mirror surface arranged in the image plane of the scanning eyepiece, having a transparent region for generating the orthoscopic beam path and having an at least partly reflective region facing toward the scanning eyepiece for generating the conoscopic beam path from the illuminating beam path, the image plane is located in a plane conjugated with the exit pupil.
Abstract:
A microscope includes a light source(s) which produce an illumination beam path comprising light in a plurality of wavelength regions. A dichroic beam splitter arrangement having a dichroic mirror surface is arranged between objective optics and a tube lens in a beam path portion to produce a reflected partial beam and a transmitted partial beam. The beam splitter arrangement changes a propagation direction of the reflected partial beam relative to the illumination beam path by a specified deflection angle. The mirror surface is arranged at an angle of 22.5±7.5°. The beam splitter arrangement includes a further mirror(s) arranged in the reflected beam path. The propagation direction of the reflected partial beam is changed by the specified deflection angle using the sum of all reflections on the mirror surface and the further mirror(s).
Abstract:
A method and apparatus provide identification of a spherical error of a microscope imaging beam path in a context of microscopic imaging of a sample using a microscope having an objective. A coverslip that carries or covers the sample is arranged in the imaging beam path. A measurement beam is guided through the objective onto the sample in a decentered fashion that is outside an optical axis of the objective. The measurement beam is reflected at an interface of the coverslip with the sample and the reflected measurement beam is guided through the objective onto a detector. An intensity profile of the reflected measurement beam is detected with the detector and a presence of a spherical error from the intensity profile is determined qualitatively and/or quantitatively.