Abstract:
A plasma lighting system includes a magnetron configured to generate microwaves, and a bulb filled with a main dose and an additive dose. The main dose and the additive dose generate light under the influence of microwaves and have the maximum intensities of respective intrinsic wavelengths at different wavelengths. A waveguide is configured to guide the microwaves generated by the magnetron to the bulb. A motor is configured to rotate the bulb. A sensor is configured to sense the intensity of light having a specific wavelength emitted from the bulb. A controller is connected to the motor. The controller adjusts the Revolutions Per Minute (RPM) of the bulb based on the intensity of light having the specific wavelength sensed by the sensor. With this arrangement, a Color Rendering Index (CRI) of the plasma lighting system may be adjusted during operation.
Abstract:
A plasma lighting system includes a magnetron configured to generate microwaves, and a bulb in which a dose for generation of light using the microwaves and at least one metallic material for generation of thermal electrons are received. The metallic material reduces an electric field intensity required for electric discharge by discharging thermal electrons. In this way, the plasma lighting system reduces the time it takes to turn the light back on after the light is turned off.
Abstract:
A plasma lighting system includes a magnetron configured to generate microwaves, and a bulb in which a dose for generation of light using the microwaves and at least one metallic material for generation of thermal electrons are received.
Abstract:
A plasma lighting system includes a magnetron configured to generate microwaves, a bulb filled with a main dose and an additive dose, wherein the main dose and the additive dose generate light under the influence of microwaves and have the maximum intensities of respective intrinsic wavelengths at different wavelengths, a waveguide configured to guide the microwaves generated by the magnetron to the bulb, a motor configured to rotate the bulb, a sensor configured to sense the intensity of light having a specific wavelength emitted from the bulb, and a controller connected to the motor, wherein the controller adjusts Revolutions Per Minute (RPM) of the bulb based on the intensity of light having the specific wavelength sensed by the sensor.