Abstract:
Compositions and methods for increasing protein recovery and/ or reducing metal ion stripping in IMAC chromatography or from resins used therein are provided. Samples like spent/ conditioned cell culture media or cell extracts containing native or recombinant proteins, were supplemented with metal ions before loading on to IMAC resins or columns to reduce metal ion stripping and/ or to increase protein recovery. The compositions and methods discussed herein work for a variety of metal affinity resins. Use of the compositions and methods disclosed may result in reusability of columns or resins, and improve the yield, purity and cost-effectiveness of using metal-ion based chromatography. The process is scalable to large-scale commercial levels.
Abstract:
Compositions and methods are described for preparing media, feeds, and supplements. Such methods and medias may display increased stability of labile components and may use, for example, microsuspension and/or encapsulation technologies, chelation, and optionally, coating and/or mixing the labile compounds with anti-oxidants. The compositions may withstand thermal and/or irradiation treatment and have reduced virus number. These techniques may result in product with extended shelf-life, extended release of their internal components into culture, or in product that can be added aseptically into a bioreactor using minimal volumes. The compositions and methods may optimize the bioproduction workflow and increase efficiency.
Abstract:
Compositions and methods are described for preparing media, feeds, and supplements. Such methods and medias may display increased stability of labile components and may use, for example, microsuspension and/or encapsulation technologies, chelation, and optionally, coating and/or mixing the labile compounds with anti-oxidants. The compositions may withstand thermal and/or irradiation treatment and have reduced virus number. These techniques may result in product with extended shelf-life, extended release of their internal components into culture, or in product that can be added aseptically into a bioreactor using minimal volumes. The compositions and methods may optimize the bioproduction workflow and increase efficiency.
Abstract:
Compositions and methods are described for preparing media, feeds, and supplements. Such methods and medias may display increased stability of labile components and may use, for example, microsuspension and/or encapsulation technologies, chelation, and optionally, coating and/or mixing the labile compounds with anti-oxidants. The compositions may withstand thermal and/or irradiation treatment and have reduced virus number. These techniques may result in product with extended shelf-life, extended release of their internal components into culture, or in product that can be added aseptically into a bioreactor using minimal volumes. The compositions and methods may optimize the bioproduction workflow and increase efficiency.