Abstract:
One embodiment is a micro hemispheric resonator gyro having: a plurality of pickoff and forcer electrodes; a hemispheric resonator; a guard ring having first and second opposed sides, the guard ring containing the plurality of pickoff and forcer electrodes, and the hemispheric resonator; a top cover operatively coupled to the first side of the guard ring; and a bottom cover operatively coupled to the second side of the guard ring; wherein the plurality of pickoff and forcer electrodes, the hemispheric resonator, the guard ring, the top cover and the bottom cover form a micro hemispheric resonator gyro.
Abstract:
An infrared camera apparatus having a primary mirror assembly formed in a first molded plastic housing; and, a secondary mirror assembly formed in a second molded plastic housing and disposed in front of and in optical alignment with the primary mirror assembly for collecting an image. The first and secnd housing snap together for assembly of the camera. A focal plane array is disposed in optical alignment with the primary and secondary mirrors for receiving an image focused thereon by the secondary mirror. A substrate is added for supporting the focal plane array and system electronics, which are responsve to images formed on the focal plane array.
Abstract:
A micromachined silicon tuned accelerometer gyro is formed out of silicon wafers, by micromachining. The top and bottom cover which include driver, forcer, tuning and guard ring elements mounted therein are micromachined in arrays on silicon-on-insulator (SOI) wafers. The center (driver and sensing) element between the top and bottom is micromachined in an array of four inch diameter silicon wafers. The driver and sensing structure is a tuned pendulum attached by flexure joints to a vibrating structure which is suspended by a parallelogram dither suspension. The pendulum is tuned by adjusting the magnitude of a d.c. signal to match the natural frequency of the pendulum to the natural frequency of the vibrating structure. The dither suspension flexures of the vibrating structure is uniquely defined and easily machined but yet provides a dither suspension that restrains the vibrating structure within its vibrating plane with no harmonic distortion.
Abstract:
A bi-stable micro-actuator is formed from a first and a second silicon-on-insulator wafer fused together at an electrical contact layer. A cover has a V-groove that defines an optical axis. A collimated optical signal source in the V-groove couples an optical signal to an optical port in the V-groove. A mirror surface on the transfer member blocks or reflects the optical signal. The transfer member has a point of support at the first and second end. The central portion of the transfer member carrying a mirror is displaced from the compressive axis with transfer member in a bowed first or second state. The mirror blocks or reflects the optical axis. An expandable structure applies a compressive force between the first and second point of support along the compressive axis to hold the transfer member in a bowed first state or a bowed second state. A control signal is applied to a heating element in the expandable structure to reduce the compressive force transferring the transfer member to a second state. The central portion of the transfer member moves from a bowed first state past the compressive axis into a bowed second state to clear the optical axis.
Abstract:
Micromechanical inertial sensors are formed of a plurality of substantially-planar semiconductor wafers (18, 22, 26, 30, 32) interspersed with oxide layers (34, 36, 36', 38, 38', 40). The sensitive element (42) is located within an internal aperture (20) of a wafer (18) of the device and is separate therefrom. It is connected to an overlying oxide layer at pedestals (44, 46) that minimize contact area to thereby reduce stray capacitance. Portions of side edges of the various wafers (18, 22, 26, 30, 32) are successively recessed to create topside-exposed wafer sections that permit the grounding of all exposed portions of the device as operational potentials are applied to internal electrodes (14, 16) and sensitive elements.
Abstract:
A bi-stable micro-actuator is formed from a first and a second silicon-on-insulator wafer fused together at an electrical contact layer. A cover has a V-groove that defines an optical axis. A collimated optical signal source in the V-groove couples an optical signal to an optical port in the V-groove. A mirror surface on the transfer member blocks or reflects the optical signal. The transfer member has a point of support at the first and second end. The central portion of the transfer member carrying a mirror is displaced from the compressive axis with transfer member in a bowed first or second state. The mirror blocks or reflects the optical axis. An expandable structure applies a compressive force between the first and second point of support along the compressive axis to hold the transfer member in a bowed first state or a bowed second state. A control signal is applied to a heating element in the expandable structure to reduce the compressive force transferring the transfer member to a second state. The central portion of the transfer member moves from a bowed first state past the compressive axis into a bowed second state to clear the optical axis.
Abstract:
A precision, micro-mechanical semiconductor accelerometer of the differential-capacitor type comprises a pair of etched opposing cover layers fusion bonded to opposite sides of an etched proofmass layer to form a hermetically sealed assembly. The cover layers are formed from commercially available, Silicon-On-Insulator ('SOI') wafers to significantly reduce cost and complexity of fabrication and assembly. The functional semiconductor parts of the accelerometer are dry-etched using the BOSCH method of reactive ion etching ('RIE'), thereby significantly reducing contamination inherent in prior art wet-etching processes, and resulting in features advantageously bounded by substantially vertical sidewalls.
Abstract:
One embodiment is a micro hemispheric resonator gyro having: a plurality of pickoff and forcer electrodes; a hemispheric resonator; a guard ring having first and second opposed sides, the guard ring containing the plurality of pickoff and forcer electrodes, and the hemispheric resonator; a top cover operatively coupled to the first side of the guard ring; and a bottom cover operatively coupled to the second side of the guard ring; wherein the plurality of pickoff and forcer electrodes, the hemispheric resonator, the guard ring, the top cover and the bottom cover form a micro hemispheric resonator gyro.
Abstract:
A precision, micro-mechanical semiconductor accelerometer of the differential-capacitor type comprises a pair of etched opposing cover layers fusion bonded to opposite sides of an etched proofmass layer to form a hermetically sealed assembly. The cover layers are formed from commercially available, Silicon-On-Insulator ("SOI") wafers to significantly reduce cost and complexity of fabrication and assembly. The functional semiconductor parts of the accelerometer are dry-etched using the BOSCH method of reactive ion etching ("RIE"), thereby significantly reducing contamination inherent in prior art wet-etching processes, and resulting in features advantageously bounded by substantially vertical sidewalls.