Abstract:
A method of increasing a number of possible users in a wireless communication system comprises directing steered beams to users within a sector of the system so that each user receives data via its own unique steered beam from a base station. The steered beams prevent more than one user from receiving data carried on the same beam. If the steered beams for at least two users are far enough apart so they do not interfere with each other, the base station assigns the two users the same code, such as the same Walsh code, for coding and decoding purposes to allow the base station to assign the same code to more than one user in a given sector.
Abstract:
A method of increasing a number of possible users in a wireless communication system comprises directing steered beams to users within a sector of the system so that each user receives data via its own unique steered beam from a base station. The steered beams prevent more than one user from receiving data carried on the same beam. If the steered beams for at least two users are far enough apart so they do not interfere with each other, the base station assigns the two users the same code, such as the same Walsh code, for coding and decoding purposes to allow the base station to assign the same code to more than one user in a given sector.
Abstract:
An automatically provisioned network element (26) has the ability to detect a heartbeat message interval used by a remote network element (22, 24) and to automatically adjust a heartbeat interval timer value that it uses for sending subsequent heartbeat messages. The adjustment is responsive to the interval used by the remote network element 50 that they correspond to each other. By automatically configuring the heartbeat timer interval value so that there is correspondence between the intervals used by the end points on a link over which Cisco HDLC SLARP communications occur, for example, the chance of a link being considered to have failed is decreased. In a disclosed example, the heartbeat interval timer value is. initially set to a value that is expected to be higher than that used by the remote network element and only automatic reductions in the heartbeat message interval timer value are ermitted.
Abstract:
A core network architecture for supporting an internet protocol based network is disclosed. The system includes a base station which is configured to convert a signal from a first network to an internet protocol network signal and send the converted signal through the internet protocol base network. The network also includes a gateway which is configured to receive the converted signal and deploy the converted signal through the internet protocol base network. In this sense, the internet protocol base network manages the call mobility and delivery of the signal. The base station in this disclosure may be a femto base station and the first network may be a code division multi-access (CDMA) network.