Abstract:
A digital version of both amplitude and phase of a received optical is developed by employing direct differential detection in conjunction with digital signal processing. The signal is split into three copies. An intensity profile is conventionally obtained using one of the copies. Phase information is obtained by supplying each remaining copy to a respective one of a pair of optical delay interferometers that have orthogonal phase offsets, followed by respective balanced intensity detectors. The output of each of the balanced intensity detectors, and the intensity profile, are each converted to respective digital representations. Signal processing is used to develop the phase information from the digital representations of the output of the balanced intensity detector outputs.
Abstract:
A method and apparatus for transmission of optical signals across an optical transmission link wherein duobinary signals or inverse-data signals are transmitted when the chromatic dispersion of the transmission link is above or below a dispersion threshold, respectively, to significantly improv e optical signal transmission performance.
Abstract:
An optical transport system (OTS) having a plurality of optical transponders (OTs) connected via one or more optical links and adapted to communicate with one another using respective rate-adaptive forward-error-correction (FEC) codes. In one embodiment, the OTS has a rate control unit (RCU) adapted to configure the OTs to dynamically adjust the rates of the FEC codes (310) based on an estimated performance margin (306) for each link between two respective communicating OTs to optimize the overall capacity of the OTS while maintaining an adequate, but not excessive, overall system margin.
Abstract:
Methods and apparatus are described for generating and receiving amplitude and differential-phase encoded signals in which the number of phase states at a given amplitude level is always less than or equal to that at a higher amplitude level and at least two amplitude levels have different numbers of phase states.
Abstract:
A digital version of both amplitude and phase of a received optical is developed by employing direct differential detection in conjunction with digital signal processing. The signal is split into three copies. An intensity profile is conventionally obtained using one of the copies. Phase information is obtained by supplying each remaining copy to a respective one of a pair of optical delay interferometers that have orthogonal phase offsets, followed by respective balanced intensity detectors. The output of each of the balanced intensity detectors, and the intensity profile, are each converted to respective digital representations. Signal processing is used to develop the phase information from the digital representations of the output of the balanced intensity detector outputs.
Abstract:
Methods and apparatus are described for generating and receiving amplitude and differential-phase encoded signals in which the number of phase states at a given amplitude level is always less than or equal to that at a higher amplitude level and at least two amplitude levels have different numbers of phase states.
Abstract:
An optical receiver adapted to process an optical duobinary signal received over a transmission link in an optical communication system. In one embodiment, the receiver has an optical-to-electrical signal converter coupled to a decoder. The decoder processes an electrical signal generated by the converter to generate a bit sequence corresponding to the optical signal. To generate a bit value, the decoder integrates the electrical signal using a sampling window and compares the integration result with a decision threshold value. In one configuration, the width of the sampling window and the decision threshold value are selected based on the eye diagram and noise distribution function, respectively, corresponding to the optical signal. Advantageously, embodiments of the present invention improve overall back-to-back (i.e., source-to-destination) system performance, e.g., by improving dispersion tolerance and/or reducing optical power corresponding to a selected bit error rate value.
Abstract:
An optical modulator is overdriven to increase its nonlinearity and therefore improve its response as it pertains to differential phase shift keyed (DPSK) transmission and a method of operating the same. In one embodiment, the MZM includes an MZM drive circuit coupled to the electrodes and configured to deliver to the electrode a DPSK drive signal bearing digital data and having a voltage that exceeds a normal drive voltage of the MZM by at least about 20%.
Abstract:
A system and method for multi-channel PMD/PDL/PDG mitigation, the system including polarization scramblers adapted to vary the state of polarization of an optical signal propagated through the system to effectively vary the polarization mode dispersion experienced by the signal during each burst-error-correcting-period of the forward error correction used in the system.