Abstract:
A method for conveying signaling information of a communication system that uses MIMO antenna systems. To enable a relatively larger amount of information to be conveyed over the communication system and thus exploit the use of the MIMO antenna system, forward link signaling channels are provided where such channels contain swapping information that allow the communication system to retransmit traffic information using any one of the antenna elements of a MIMO system. The forward link signaling channels also contain channel assignment information that indicate which particular groups of channels are available for use by particular users of the communication system. To further accommodate for the relatively larger amount of information being conveyed over the communication system, the format of the reverse link signaling information is modified using any one or any combination of the following three mechanisms: (1) reverse signaling link information is time division multiplexed; (2) the reverse link information is modulated at relatively higher order modulation; (3) additional channels are provided for the reverse link information.
Abstract:
A method of generating coded user ID information that is combined with CRC codes and the result is appended to signaling information. The CRC codes are generated from the signaling information. The resulting codeword is transmitted over shared signaling channels to various users of a communication system. The resulting codeword is such that the likelihood of users attempting to decode codewords not intended for them is significantly reduced.
Abstract:
A method is provided to accurately predict the probability of successfully recovering frames of (coded) information received over a wireless link, without having to decode the frame. This method, which consists of three steps, requires only limited information about the received signals and the forward error correction code and retransmission scheme being used. First, the signal to noise ratio (SNR) of each of the received signals is measured, where the average SNR is determined for multiple segments that together constitute the frame. Next, an algorithm is employed that takes these SNR values as inputs and determines the so-called effective SNR. The algorithm translates the measured SNR values using an appropriate convex metric, and subsequently combines the resulting values, thereby factoring in the effects of fading, multi-path, and other signal degradations. In the third stage, the effective SNR is used to determine the frame error rate by using a look-up table of a single reference curve that specifies the frame error rate of the actual error control code over an additive white Gaussian noise channel. This suffices to accurately predict the performance of a wide range of mobile communication channels. This method can be applied to a variety of retransmission strategies, including hybrid automatic-repeat request (ARQ) and incremental redundancy (IR) and combinations of these two strategies.
Abstract:
Disclosed is a method of integrating voice and data services onto a same frequency channel using available transmit power information to determine data rates, wherein the available transmit power information indicates an amount of transmit power available for future data transmissions over one or more data channels. In a "distributed" embodiment, a transmitter or base station transmits, via a forward link, an available power message to a receiver or mobile-telephone indicating an amount of available transmit power at some future time t + z . The mobile-telephone performs signal-to-interference measurements corresponding to the received forward link and received interference, and uses such signal-to-interference measurements and the available power message to determine a data rate that can be supported by the mobile-telephone. Preferably, the determined data rate corresponds to a maximum data rate at which a minimum level of quality of service can be achieved at the mobile-telephone. In a "centralized" embodiment, the mobile-telephone transmits the signal-to-interference measurements to the base station, and the base station determines the data rate based on the available transmit power at future time t+z .
Abstract:
A method for reliably transmitting signaling information is provided. One type of signaling information is transmitted over a primary control channel. The signaling information that is to be transmitted over the primary control channel is defined as a set of particular information. Other signaling information are conveyed over a secondary control channel. Prior to transmission, the information to be conveyed over the secondary channel is scrambled in accordance with a particular scrambling procedure that indicates the information that is to be sent over the primary control channel. The scrambling is thus used to encode the information content of the primary control channel into the information of the secondary control channel thereby further protecting the integrity of the information being conveyed over both control channels.
Abstract:
Disclosed is a method of integrating voice and data services onto a same frequency channel using available transmit power information to determine data rates, wherein the available transmit power information indicates an amount of transmit power available for future data transmissions over one or more data channels. In a "distributed" embodiment, a transmitter or base station transmits, via a forward link, an available power message to a receiver or mobile-telephone indicating an amount of available transmit power at some future time t+z . The mobile-telephone performs signal-to-interference measurements corresponding to the received forward link and received interference, and uses such signal-to-interference measurements and the available power message to determine a data rate that can be supported by the mobile-telephone. Preferably, the determined data rate corresponds to a maximum data rate at which a minimum level of quality of service can be achieved at the mobile-telephone. In a "centralized" embodiment, the mobile-telephone transmits the signal-to-interference measurements to the base station, and the base station determines the data rate based on the available transmit power at future time t+z .
Abstract:
A method for allocating transmission resources in a base station (22a,22b) comprising determining a largest supportable packet size for a highest priority user based at least partially on a combination of available modulation types, a total number of codes available for packet transmission, a total amount of available transmission power available for packet transmission, and frame durations supported by a base station, wherein the determination comprises: - determining the total amount of transmission power available for packet transmission; - determining the total number of codes available for packet transmission, - determining a channel rate based on a minimal number of codes needed to transmit the supportable packet size; identifying the highest priority user from a plurality of users by determining an ideal channel rate for each of the plurality of users; the method comprising: - identifying a second highest priority user; - allocating transmission power and codes to the second highest priority user, wherein the transmission power allocated to the second highest priority user does not exceed the total transmission power minus the transmission power allocated to the highest priority user and wherein the number of codes allocated to the second highest priority user do not exceed the total number of codes minus the codes allocated to the highest priority user.