Abstract:
The invention relates to a system for processing an electromagnetic input signal in which processing circuitry may be used to produce a bounded phase signal, such as by calculating an n-bit 2's compliment number in the range of [-1, 1] from phase sample information for an input wave; and producing an unwrapped phase difference signal from the bound phase signal, such as by taking a 2's compliment subtraction using another wrapped phase signal from previous phase sample information. A corrected phase signal may also be used by taking a 2's complement addition using the bounded phase signal, wherein the unwrapped phase difference signal is produced using the corrected phase signal.
Abstract:
The invention is directed to a system for determining a transfer function for emphasizing an electromagnetic signal prior to being processed by determining a discrete transfer function for a processing system, such as a wideband phase modulator; determining a target transfer function such that the target transfer function multiplied by the inverse of the discrete transfer function produces a discrete pre-emphasis transfer function; and transforming any unstable poles and/or zeros in the pre-emphasis transfer function to stable poles and/or zeros. The discrete transfer function may be determined, for example, by using an S-function, input and output signals, the inverse-invariant method, and/or the Steiglitz-McBride algorithm. The transformation of the unstable poles and/or zeros may be accomplished using an all pass filter. The target transfer function may be a low pass FIR filter having a gain of about unity across substantially all of the frequency range of said FIR filter.
Abstract:
The invention relates to a system for processing an electromagnetic input signal in which processing circuitry may be used to produce a bounded phase signal, such as by calculating an n-bit 2's compliment number in the range of [-1, 1] from phase sample information for an input wave; and producing an unwrapped phase difference signal from the bound phase signal, such as by taking a 2's compliment subtraction using another wrapped phase signal from previous phase sample information. A corrected phase signal may also be used by taking a 2's complement addition using the bounded phase signal, wherein the unwrapped phase difference signal is produced using the corrected phase signal.
Abstract:
The invention is directed to a system for processing an electromagnetic wave by receiving rectangular coordinate information for the electromagnetic wave; and directly converting the rectangular coordinate information into a magnitude signal, a sin(ϕ), and a cos(ϕ) signal using a CORDIC algorithm, where ϕ represents a phase of the electromagnetic wave. The direct converting my be accomplished using shift and add/subtract operations in a processor and look-up table, or by using at least two cascaded processors employing the CORDIC algorithm.
Abstract:
The invention is directed to a system for determining a transfer function for emphasizing an electromagnetic signal prior to being processed by determining a discrete transfer function for a processing system, such as a wideband phase modulator; determining a target transfer function such that the target transfer function multiplied by the inverse of the discrete transfer function produces a discrete pre-emphasis transfer function; and transforming any unstable poles and/or zeros in the pre-emphasis transfer function to stable poles and/or zeros. The discrete transfer function may be determined, for example, by using an S-function, input and output signals, the inverse-invariant method, and/or the Steiglitz-McBride algorithm. The transformation of the unstable poles and/or zeros may be accomplished using an all pass filter. The target transfer function may be a low pass FIR filter having a gain of about unity across substantially all of the frequency range of said FIR filter.