Abstract:
An electron beam producing system for acceleration voltages in the order of magnitude of megavolts and beam powers in the order of magnitude of gigawatts, comprises a tubular housing of insulating material, in which adjacent to its one closed end a field emission cathode with a large surface area is arranged while at its other end, from which the electron beam emerges, an annular anode is arranged. A device serves for collimating the electrons emitted by the cathode to form a collimated electron beam. The device for collimating the electron consists of annular electrodes, which respectively comprise a part adjacent to their center opening and an outer part which is held on the housing and has a radial electrical passage extending towards the outside of the housing. The inner part of the electrode lying closest to the cathode has at least approximately the shape of a frusto-conical surface which tapers towards the cathode; in that the inner part of the remaining electrodes is flat or at least approximately frusto-conical and respectively lies in an equipotential surface of an electric field, which collimates the electrons, emitted by the cathode, to form a parallel beam. The housing is surrounded by a coaxial insulating casing with a clearance. The intermediate space between the outer surface of the housing and the casing is surrounded with an electrically conducting liquid with a relatively high specific resistance and at the axial ends has a respective connection electrode, which makes contact with the liquid, for the operating voltage and that the outer parts of the electrodes are so shaped that the radial passages end at those sites of the liquid filled intermediate space at which the fraction, provided for the relevant electrode, of the operating voltage obtains when the operating voltage is applied to the connection electrodes.