Abstract:
According to exemplary embodiments, a controlled-depth slot extending into a circuit board is provided. The controlled depth slot may be milled, and may comprise ½ radial plated through-holes to generate a solderable "D" interconnect feature. The slot may include interconnect features on one to five sides. According to another exemplary embodiment, a circuit board having a depth-controlled interconnect slot is provided in conjunction with one or more solderable technology modules. The one or more solderable technology modules may include memory devices, power devices such as Point of Load Supplies (POLS), security devices and anti-tamper devices, capacitance devices, and other types of chips such as Field Programmable Gate Arrays (FPGAs). The solderable technology modules may be soldered into the slot to secure the modules in the slot and connect the modules to interconnects on the circuit board.
Abstract:
Various embodiments provide a circuit board module include a primary cover, a secondary cover and a circuit board sandwiched between the primary cover and the secondary cover. A first set of fins or channels may be provided on a surface of the primary cover. The first set of fins or channels guide cooling air flowing on the surface of the primary cover. A second set of fins or channels may be provided on a surface of the second cover. The second set of fins or channels guide the cooling air flowing on the surface of the secondary cover. The second set of fins or channels intermates with the first set of fins or channels to form a sealed casing enclosing the circuit board. The sealed casing forms a Faraday cage to protect the circuit board from electromagnetic interference.
Abstract:
Various embodiments provide a circuit board module include a primary cover, a secondary cover and a circuit board sandwiched between the primary cover and the secondary cover. A first set of fins or channels may be provided on a surface of the primary cover. The first set of fins or channels guide cooling air flowing on the surface of the primary cover. A second set of fins or channels may be provided on a surface of the second cover. The second set of fins or channels guide the cooling air flowing on the surface of the secondary cover. The second set of fins or channels intermates with the first set of fins or channels to form a sealed casing enclosing the circuit board. The sealed casing forms a Faraday cage to protect the circuit board from electromagnetic interference.
Abstract:
According to exemplary embodiments, a controlled-depth slot extending into a circuit board is provided. The controlled depth slot may be milled, and may comprise ½ radial plated through-holes to generate a solderable "D" interconnect feature. The slot may include interconnect features on one to five sides. According to another exemplary embodiment, a circuit board having a depth-controlled interconnect slot is provided in conjunction with one or more solderable technology modules. The one or more solderable technology modules may include memory devices, power devices such as Point of Load Supplies (POLS), security devices and anti-tamper devices, capacitance devices, and other types of chips such as Field Programmable Gate Arrays (FPGAs). The solderable technology modules may be soldered into the slot to secure the modules in the slot and connect the modules to interconnects on the circuit board.
Abstract:
Various embodiments provide a circuit board module include a primary cover, a secondary cover and a circuit board sandwiched between the primary cover and the secondary cover. A first set of fins or channels may be provided on a surface of the primary cover. The first set of fins or channels guide cooling air flowing on the surface of the primary cover. A second set of fins or channels may be provided on a surface of the second cover. The second set of fins or channels guide the cooling air flowing on the surface of the secondary cover. The second set of fins or channels intermates with the first set of fins or channels to form a sealed casing enclosing the circuit board. The sealed casing forms a Faraday cage to protect the circuit board from electromagnetic interference.