METHOD FOR FORMING ULTRA-THIN GATE OXIDES
    1.
    发明申请
    METHOD FOR FORMING ULTRA-THIN GATE OXIDES 审中-公开
    形成超薄栅极氧化物的方法

    公开(公告)号:WO1997028560A1

    公开(公告)日:1997-08-07

    申请号:PCT/US1997001729

    申请日:1997-01-30

    CPC classification number: H01L29/66651 H01L21/28167 H01L21/28211

    Abstract: This invention improves the quality of gate oxide dielectric layers using a two-pronged approach, thus permitting the use of much thinner silicon dioxide gate dielectric layers required for lower-voltage, ultra-dense integrated circuits. In order to eliminate defects caused by imperfections in bulk silicon, an in-situ grown epitaxial layer is formed on active areas following a strip of the pad oxide layer used beneath the silicon nitride islands used for masking during the field oxidation process. By growing an epitaxial silicon layer prior to gate dielectric layer formation, defects in the bulk silicon substrate are covered over and, hence, isolated from the oxide growth step. In order to maintain the integrity of the selective epitaxial growth step, the wafers are maintained in a controlled, oxygen-free environment until the epitaxial growth step is accomplished. In order to eliminate defects caused by a native oxide layer, the wafers are maintained in a controlled, oxygen-free environment until being subjected to elevated temperature in a controlled, oxidizing environment. In one embodiment, the oxidizing environment comprises diatomic oxygen, while in another embodiment, the oxidizing environment comprises diatomic oxygen and ozone.

    Abstract translation: 本发明使用双管齐下的方法提高了栅极氧化物电介质层的质量,从而允许使用更低的,超低密度集成电路所需的更薄的二氧化硅栅介质层。 为了消除体硅缺陷引起的缺陷,在场氧化工艺中用于掩蔽的氮化硅岛下方的氧化硅层之后的有源区上形成原位生长的外延层。 通过在栅介质层形成之前生长外延硅层,将体硅衬底中的缺陷覆盖并因此从氧化物生长步骤中分离。 为了保持选择性外延生长步骤的完整性,将晶片保持在受控的无氧环境中,直到外延生长步骤完成。 为了消除由自然氧化物层引起的缺陷,将晶片保持在受控制的无氧环境中,直到在受控的氧化环境中经历升高的温度。 在一个实施方案中,氧化环境包括双原子氧,而在另一个实施方案中,氧化环境包括双原子氧和臭氧。

    METHOD FOR FORMING ULTRA-THIN GATE OXIDES
    2.
    发明授权
    METHOD FOR FORMING ULTRA-THIN GATE OXIDES 失效
    方法的形成超薄栅氧化层

    公开(公告)号:EP0878022B1

    公开(公告)日:2004-05-06

    申请号:EP97904194.4

    申请日:1997-01-30

    CPC classification number: H01L29/66651 H01L21/28167 H01L21/28211

    Abstract: This invention improves the quality of gate oxide dielectric layers using a two-pronged approach, thus permitting the use of much thinner silicon dioxide gate dielectric layers required for lower-voltage, ultra-dense integrated circuits. In order to eliminate defects caused by imperfections in bulk silicon, an in-situ grown epitaxial layer is formed on active areas following a strip of the pad oxide layer used beneath the silicon nitride islands used for masking during the field oxidation process. By growing an epitaxial silicon layer prior to gate dielectric layer formation, defects in the bulk silicon substrate are covered over and, hence, isolated from the oxide growth step. In order to maintain the integrity of the selective epitaxial growth step, the wafers are maintained in a controlled, oxygen-free environment until the epitaxial growth step is accomplished. In order to eliminate defects caused by a native oxide layer, the wafers are maintained in a controlled, oxygen-free environment until being subjected to elevated temperature in a controlled, oxidizing environment. In one embodiment, the oxidizing environment comprises diatomic oxygen, while in another embodiment, the oxidizing environment comprises diatomic oxygen and ozone.

    METHOD FOR FORMING ULTRA-THIN GATE OXIDES
    3.
    发明公开
    METHOD FOR FORMING ULTRA-THIN GATE OXIDES 失效
    方法的形成超薄栅氧化层

    公开(公告)号:EP0878022A1

    公开(公告)日:1998-11-18

    申请号:EP97904194.0

    申请日:1997-01-30

    CPC classification number: H01L29/66651 H01L21/28167 H01L21/28211

    Abstract: This invention improves the quality of gate oxide dielectric layers using a two-pronged approach, thus permitting the use of much thinner silicon dioxide gate dielectric layers required for lower-voltage, ultra-dense integrated circuits. In order to eliminate defects caused by imperfections in bulk silicon, an in-situ grown epitaxial layer is formed on active areas following a strip of the pad oxide layer used beneath the silicon nitride islands used for masking during the field oxidation process. By growing an epitaxial silicon layer prior to gate dielectric layer formation, defects in the bulk silicon substrate are covered over and, hence, isolated from the oxide growth step. In order to maintain the integrity of the selective epitaxial growth step, the wafers are maintained in a controlled, oxygen-free environment until the epitaxial growth step is accomplished. In order to eliminate defects caused by a native oxide layer, the wafers are maintained in a controlled, oxygen-free environment until being subjected to elevated temperature in a controlled, oxidizing environment. In one embodiment, the oxidizing environment comprises diatomic oxygen, while in another embodiment, the oxidizing environment comprises diatomic oxygen and ozone.

Patent Agency Ranking