Abstract:
A system for commoditizing data center networking is disclosed. The system includes an interconnection topology for a data center having a plurality of servers and a plurality of nodes of a network in the data center through which data packets may be routed. The system uses a routing scheme where the routing is oblivious to the traffic pattern between nodes in the network, and wherein the interconnection topology contains a plurality of paths between one or more servers. The multipath routing may be Valiant load balancing. It disaggregates the function of load balancing into a group of regular servers, with the result that load balancing server hardware can be distributed amongst racks in the data center leading to greater agility and less fragmentation. The architecture creates a huge, flexible switching domain, supporting any server/any service, full mesh agility, and unregimented server capacity at low cost.
Abstract:
A top level domain name system (DNS) server receives a DNS query from a local DNS resolver, the DNS query requesting a network address corresponding to a domain name. The top level DNS server reflects the local DNS resolver to a reflector DNS server. The reflector DNS server reflects the local DNS resolver to a collector DNS server, which in turn returns the network address to the local DNS resolver. The reflector DNS server and collector DNS server are both in the same data center, and one or more network performance measurements for communications between the local DNS resolver and the data center are determined based on the communications between the local DNS resolver and both the reflector DNS server and the collector DNS server.
Abstract:
A management service that receives requests for the cloud computing environment to host applications, and improves performance of the application using an edge server. In response to the original request, the management service allocates the application to run on an origin data center, evaluates the application by evaluating at least one of the application properties designated by an application code author or provider, or the application performance, and uses an edge server to improve performance of the application in response to evaluating the application. For instance, a portion of application code may be offloaded to run on the edge data center, a portion of application data may be cached at the edge data center, or the edge server may add functionality to the application.
Abstract:
Methods and apparatus for congestion control in computer networks achieve high burst tolerance, low latency and high throughput with shallow-buffered switches. A method for controlling congestion includes transmitting a set of data packets on a network connection from a first computing device to a second computing device, identifying each data packet in the set of data packets that experienced congestion on the network connection, sending, by the second computing device to the first computing device, a sequence of bits that represents the number of data packets in the set of data packets that were identified as having experienced congestion, and adjusting a rate of transmitting data packets on the network connection based on the sequence of bits sent to the first computing device.
Abstract:
Methods and apparatus for congestion control in computer networks achieve high burst tolerance, low latency and high throughput with shallow-buffered switches. A method for controlling congestion includes transmitting a set of data packets on a network connection from a first computing device to a second computing device, identifying each data packet in the set of data packets that experienced congestion on the network connection, sending, by the second computing device to the first computing device, a sequence of bits that represents the number of data packets in the set of data packets that were identified as having experienced congestion, and adjusting a rate of transmitting data packets on the network connection based on the sequence of bits sent to the first computing device.
Abstract:
A top level domain name system (DNS) server receives a DNS query from a local DNS resolver, the DNS query requesting a network address corresponding to a domain name. The top level DNS server reflects the local DNS resolver to a reflector DNS server. The reflector DNS server reflects the local DNS resolver to a collector DNS server, which in turn returns the network address to the local DNS resolver. The reflector DNS server and collector DNS server are both in the same data center, and one or more network performance measurements for communications between the local DNS resolver and the data center are determined based on the communications between the local DNS resolver and both the reflector DNS server and the collector DNS server.
Abstract:
A system for commoditizing data center networking is disclosed. The system includes an interconnection topology for a data center having a plurality of servers and a plurality of nodes of a network in the data center through which data packets may be routed. The system uses a routing scheme where the routing is oblivious to the traffic pattern between nodes in the network, and wherein the interconnection topology contains a plurality of paths between one or more servers. The multipath routing may be Valiant load balancing. It disaggregates the function of load balancing into a group of regular servers, with the result that load balancing server hardware can be distributed amongst racks in the data center leading to greater agility and less fragmentation. The architecture creates a huge, flexible switching domain, supporting any server/any service, full mesh agility, and unregimented server capacity at low cost.