Abstract:
A method of providing automatic reading tutoring is disclosed. The method includes retrieving a textual indication of a story from a data store and creating a language model including constructing a target context free grammar indicative of a first portion of the story. A first acoustic input is received and a speech recognition engine is employed to recognize the first acoustic input. An output of the speech recognition engine is compared to the language model and a signal indicative of whether the output of the speech recognition matches at least a portion of the target context free grammar is provided.
Abstract:
A novel system for automatic reading tutoring provides effective error detection and reduced false alarms combined with low processing time burdens and response times short enough to maintain a natural, engaging flow of interaction. According to one illustrative embodiment, an automatic reading tutoring method includes displaying a text output and receiving an acoustic input. The acoustic input is modeled with a domain-specific target language model specific to the text output, and with a general-domain garbage language model, both of which may be efficiently constructed as context-free grammars. The domain-specific target language model may be built dynamically or "on-the-fly" based on the currently displayed text (eg the story to be read by the user), while the general-domain garbage language model is shared among all different text outputs. User-perceptible tutoring feedback is provided based on the target language model and the garbage language model.