AUTOMATIC READING TUTORING
    1.
    发明申请
    AUTOMATIC READING TUTORING 审中-公开
    自动阅读指导

    公开(公告)号:WO2009035825A2

    公开(公告)日:2009-03-19

    申请号:PCT/US2008/073570

    申请日:2008-08-19

    CPC classification number: G10L15/18 G09B17/003 G10L15/183

    Abstract: A method of providing automatic reading tutoring is disclosed. The method includes retrieving a textual indication of a story from a data store and creating a language model including constructing a target context free grammar indicative of a first portion of the story. A first acoustic input is received and a speech recognition engine is employed to recognize the first acoustic input. An output of the speech recognition engine is compared to the language model and a signal indicative of whether the output of the speech recognition matches at least a portion of the target context free grammar is provided.

    Abstract translation: 公开了提供自动阅读辅导的方法。 该方法包括从数据存储中检索故事的文本指示并创建包括构建指示故事的第一部分的目标上下文自由语法的语言模型。 接收到第一声输入,并且采用语音识别引擎来识别第一声输入。 将语音识别引擎的输出与语言模型进行比较,并且提供指示语音识别的输出是否与目标语境自由语法的至少一部分匹配的信号。

    AUTOMATIC READING TUTORING WITH PARALLEL POLARIZED LANGUAGE MODELING
    2.
    发明申请
    AUTOMATIC READING TUTORING WITH PARALLEL POLARIZED LANGUAGE MODELING 审中-公开
    具有平行极化语言建模的自动阅读引导

    公开(公告)号:WO2008089469A1

    公开(公告)日:2008-07-24

    申请号:PCT/US2008/051582

    申请日:2008-01-21

    CPC classification number: G06F17/271 G09B17/003 G10L15/197 G10L2015/221

    Abstract: A novel system for automatic reading tutoring provides effective error detection and reduced false alarms combined with low processing time burdens and response times short enough to maintain a natural, engaging flow of interaction. According to one illustrative embodiment, an automatic reading tutoring method includes displaying a text output and receiving an acoustic input. The acoustic input is modeled with a domain-specific target language model specific to the text output, and with a general-domain garbage language model, both of which may be efficiently constructed as context-free grammars. The domain-specific target language model may be built dynamically or "on-the-fly" based on the currently displayed text (eg the story to be read by the user), while the general-domain garbage language model is shared among all different text outputs. User-perceptible tutoring feedback is provided based on the target language model and the garbage language model.

    Abstract translation: 用于自动阅读辅导的新颖系统提供了有效的错误检测和减少的假警报以及较短的处理时间负担和响应时间足够短以保持自然的,互动的互动流。 根据一个说明性实施例,自动阅读辅导方法包括显示文本输出并接收声输入。 声输入是用专门针对文本输出的领域特定的目标语言模型建立的,并且具有通用域垃圾语言模型,这两种语言模型都可以被有效地构建为无上下文的语法。 可以基于当前显示的文本(例如,用户要阅读的故事)动态地或“即时”地构建域特定目标语言模型,而一般域垃圾语言模型在所有不同的方式之间共享 文本输出。 基于目标语言模型和垃圾语言模型提供了用户可感知的辅导反馈。

Patent Agency Ranking