Abstract:
A deep tensor neural network (DTNN) is described herein, wherein the DTNN is suitable for employment in a computer-implemented recognition/classification system. Hidden layers in the DTNN comprise at least one projection layer, which includes a first subspace of hidden units and a second subspace of hidden units. The first subspace of hidden units receives a first nonlinear projection of input data to a projection layer and generates the first set of output data based at least in part thereon, and the second subspace of hidden units receives a second nonlinear projection of the input data to the projection layer and generates the second set of output data based at least in part thereon. A tensor layer, which can converted into a conventional layer of a DNN, generates the third set of output data based upon the first set of output data and the second set of output data.
Abstract:
A method of providing automatic reading tutoring is disclosed. The method includes retrieving a textual indication of a story from a data store and creating a language model including constructing a target context free grammar indicative of a first portion of the story. A first acoustic input is received and a speech recognition engine is employed to recognize the first acoustic input. An output of the speech recognition engine is compared to the language model and a signal indicative of whether the output of the speech recognition matches at least a portion of the target context free grammar is provided.
Abstract:
A method and apparatus are provided for determining uncertainty in noise reduction based on a parametric model of speech distortion. The method is first used to reduce noise in a noisy signal. In particular, noise is reduced (304) from a representation of a portion of a noisy signal to produce a representation of a cleaned signal by utilizing an acoustic environment model (413). The uncertainty associated with the noise reduction process is then computed. In one embodiment, the uncertainty of the noise reduction process is used, in conjunction with the noise-reduced signal, to decode (306) a pattern state.
Abstract:
Described herein are various technologies pertaining to a multilingual deep neural network (MDNN). The MDNN includes a plurality of hidden layers, wherein values for weight parameters of the plurality of hidden layers are learned during a training phase based upon training data in terms of acoustic raw features for multiple languages. The MDNN further includes softmax layers that are trained for each target language separately, making use of the hidden layer values trained jointly with multiple source languages. The MDNN is adaptable, such that a new softmax layer may be added on top of the existing hidden layers, where the new softmax layer corresponds to a new target language.
Abstract:
A multi-modal human computer interface (HCI) receives a plurality of available information inputs concurrently, or serially, and employs a subset of the inputs to determine or infer user intent with respect to a communication or information goal. Received inputs are respectively parsed, and the parsed inputs are analyzed and optionally synthesized with respect to one or more of each other. In the event sufficient information is not available to determine user intent or goal, feedback can be provided to the user in order to facilitate clarifying, confirming, or augmenting the information inputs.
Abstract:
A novel system integrates speech recognition and semantic classification, so that acoustic scores in a speech recognizer that accepts spoken utterances may be taken into account when training both language models and semantic classification models. For example, a joint association score may be defined that is indicative of a correspondence of a semantic class and a word sequence for an acoustic signal. The joint association score may incorporate parameters such as weighting parameters for signal-to-class modeling of the acoustic signal, language model parameters and scores, and acoustic model parameters and scores. The parameters may be revised to raise the joint association score of a target word sequence with a target semantic class relative to the joint association score of a competitor word sequence with the target semantic class. The parameters may be designed so that the semantic classification errors in the training data are minimized.
Abstract:
A novel system for automatic reading tutoring provides effective error detection and reduced false alarms combined with low processing time burdens and response times short enough to maintain a natural, engaging flow of interaction. According to one illustrative embodiment, an automatic reading tutoring method includes displaying a text output and receiving an acoustic input. The acoustic input is modeled with a domain-specific target language model specific to the text output, and with a general-domain garbage language model, both of which may be efficiently constructed as context-free grammars. The domain-specific target language model may be built dynamically or "on-the-fly" based on the currently displayed text (eg the story to be read by the user), while the general-domain garbage language model is shared among all different text outputs. User-perceptible tutoring feedback is provided based on the target language model and the garbage language model.
Abstract:
A method is disclosed herein that include an act of causing a processor to access a deep-structured model retained in a computer-readable medium, wherein the deep-structured model comprises a plurality of layers with weights assigned thereto, transition probabilities between states, and language model scores. The method can further include the act of jointly substantially optimizing the weights, the transition probabilities, and the language model scores of the deep-structured model using the optimization criterion based on a sequence rather than a set of unrelated frames.
Abstract:
A method is disclosed herein that includes an act of causing a processor to receive a sample, wherein the sample is one of spoken utterance, an online handwriting sample, or a moving image sample. The method also comprises the act of causing the processor to decode the sample based at least in part upon an output of a combination of a deep structure and a context-dependent Hidden Markov Model (HMM), wherein the deep structure is configured to output a posterior probability of a context-dependent unit. The deep structure is a Deep Belief Network consisting of many layers of nonlinear units with connecting weights between layers trained by a pretraining step followed by a fine-tuning step.
Abstract:
A method and apparatus for training an acoustic model are disclosed. A training corpus is accessed and converted into an initial acoustic model. Scores are calculated for a correct class and competitive classes, respectively, for each token given the acoustic model. From this score a misclassification measure is calculated and then a loss function is calculated from the misclassification measure. The loss function also includes a margin value that varies over each iteration in the training. Based on the calculated loss function the acoustic model is updated, where the loss function with the margin value is minimized. This process repeats until such time as an empirical convergence is met.