Abstract:
Various technologies described herein pertain to conservatively adapting a deep neural network (DNN) in a recognition system for a particular user or context. A DNN is employed to output a probability distribution over models of context-dependent units responsive to receipt of captured user input. The DNN is adapted for a particular user based upon the captured user input, wherein the adaption is undertaken conservatively such that a deviation between outputs of the adapted DNN and the unadapted DNN is constrained.
Abstract:
A deep tensor neural network (DTNN) is described herein, wherein the DTNN is suitable for employment in a computer-implemented recognition/classification system. Hidden layers in the DTNN comprise at least one projection layer, which includes a first subspace of hidden units and a second subspace of hidden units. The first subspace of hidden units receives a first nonlinear projection of input data to a projection layer and generates the first set of output data based at least in part thereon, and the second subspace of hidden units receives a second nonlinear projection of the input data to the projection layer and generates the second set of output data based at least in part thereon. A tensor layer, which can converted into a conventional layer of a DNN, generates the third set of output data based upon the first set of output data and the second set of output data.
Abstract:
Described herein is technology for, among other things, distributed indexing of file content. Content-based indexing the file involves determining whether content-based index information for the file is available from an external source. This avoids repeating already-performed content analysis, which is time consuming and computationally intensive especially for non-text files. The content-based index information, if it is available, is received from the external source and may be stored. If the content-based index information is not available or is not complete, content-based index information for the file is generated and stored. Moreover, the generated content-based index information is shared with the external source. Once content analysis of the file is performed to generate content-based index information for the file, the content-based index information is available and sharable as needed. There is no need to repeat the same content analysis on the file.
Abstract:
Improved systems and methods are provided for transcribing audio files of voice mails sent over a unified messaging system. Customized grammars specific to a voice mail recipient are created and utilized to transcribe a received voice mail by comparing the audio file to commonly utilized words, names, acronyms, and phrases used by the recipient. Key elements are identified from the resulting text transcription to aid the recipient in processing received voice mails based on the significant content contained in the voice mail.
Abstract:
Described herein is technology for, among other things, distributed indexing of file content. Content-based indexing the file involves determining whether content-based index information for the file is available from an external source. This avoids repeating already-performed content analysis, which is time consuming and computationally intensive especially for non-text files. The content-based index information, if it is available, is received from the external source and may be stored. If the content-based index information is not available or is not complete, content-based index information for the file is generated and stored. Moreover, the generated content-based index information is shared with the external source. Once content analysis of the file is performed to generate content-based index information for the file, the content-based index information is available and sharable as needed. There is no need to repeat the same content analysis on the file.
Abstract:
Improved systems and methods are provided for transcribing audio files of voice mails sent over a unified messaging system. Customized grammars specific to a voice mail recipient are created and utilized to transcribe a received voice mail by comparing the audio file to commonly utilized words, names, acronyms, and phrases used by the recipient. Key elements are identified from the resulting text transcription to aid the recipient in processing received voice mails based on the significant content contained in the voice mail.