Abstract:
The invention relates to microorganisms which normally do not ferment pentose sugar and which are genetically altered to ferment pentose sugar to produce ethanol, and fermentation processes utilizing the same. Examples include Zymomonas mobilis which has been transformed with combinations of E. coli genes for xylose isomerase, xylulokinase, transaldolase, transketolase, L-arabinose isomerase, L-ribulokinase, and L-ribulose 5-phosphate 4-epimerase. Expression of the added genes are under the control of Zymomonas mobilis promoters. These newly created microorganisms are useful for fermenting pentoses and glucose, produced by hydrolysis of hemicellulose and cellulose, to produce ethanol.
Abstract:
A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containining xylose to lactic acid.
Abstract:
A microorganism of the genus Zymomonas containing exogenous genes encoding xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose-5-phosphate 4-epimerase, transaldolase and transketolase and further comprising at least one promotor recognized by Zymomonas which regulates the expression of at least one of the genes, wherein the microorganism is capable of growing on arabinose and xylose as carbon sources and fermenting the arabinose and xylose to ethanol in about 75 % theoretical yield and, wherein the microorganism without the genes is incapable of growing on or fermenting the arabinose and xylose to ethanol.
Abstract:
A microorganism of the genus Zymomonas containing exogenous genes encoding xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose-5-phosphate 4-epimerase, transaldolase and transketolase and further comprising at least one promotor recognized by Zymomonas which regulates the expression of at least one of the genes, wherein the microorganism is capable of growing on arabinose and xylose as carbon sources and fermenting the arabinose and xylose to ethanol in about 75 % theoretical yield and, wherein the microorganism without the genes is incapable of growing on or fermenting the arabinose and xylose to ethanol.
Abstract:
A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containining xylose to lactic acid.