Abstract:
Reflectance apparatus is disclosed for obtaining measurement of nonspecular reflected light in which controlled light rays are directed along a transmission path from a light source (32) through a plurality of light traps (44) to expose or illuminate a specimen and nonspecular reflected light is passed from the specimen (42) through the light traps (44) along a transmission path to one or more detectors (36) where the nonspecular reflected light is measured, the detector's field of view being larger than the illuminated area of the specimen (42) over a wide range of specimen to source (32) and detector (36) distances.
Abstract:
A method and apparatus for converting spectral and light intensity values directly to digital data, utilizes an image sensor having at least one row of sensor elements, each element including a light sensitive capacitor and an access switch and which changes state and produces a corresponding digital output signal when a predetermined charge threshold is exceeded by the capacitor whose charge is a function of light intensity of an illuminating light source. The image sensor is illuminated with a reference light source having a known intensity through a neutral density gradient filter and the digital output of the sensor is examined for the row to obtain digital data corresponding to the number of state changes in the row. The image sensor is then illuminated with an unknown light source through the filter and the digital output of the sensor for the row is examined to obtain digital data corresponding to the number of state changes in the row. The intensity of the unknown light source is determined in digital form for the row as a function of the digital data and the known intensity of the reference light source.
Abstract:
Reflectance apparatus is disclosed for obtaining measurement of nonspecular reflected light in which controlled light rays are directed along a transmission path from a light source (32) through a plurality of light traps (44) to expose or illuminate a specimen and nonspecular reflected light is passed from the specimen (42) through the light traps (44) along a transmission path to one or more detectors (36) where the nonspecular reflected light is measured, the detector's field of view being larger than the illuminated area of the specimen (42) over a wide range of specimen to source (32) and detector (36) distances.
Abstract:
@ The invention relates to a method of detecting the presence of a gas or a liquid in a conduit by sensing the reflective properties of a flat surface which is being obliquely illuminated by semi-monochromatic light on the said surface which is an inner wall of the conduit, said surface being optically reflective when a gas is present in the conduit, and transmissive when a liquid which has an index of refraction significantly higher than that of the gas is present in the conduit as well as to an apparatus therefor.