Abstract:
A method and apparatus for converting spectral and light intensity values directly to digital data, utilizes an image sensor having at least one row of sensor elements, each element including a light sensitive capacitor and an access switch and which changes state and produces a corresponding digital output signal when a predetermined charge threshold is exceeded by the capacitor whose charge is a function of light intensity of an illuminating light source. The image sensor is illuminated with a reference light source having a known intensity through a neutral density gradient filter and the digital output of the sensor is examined for the row to obtain digital data corresponding to the number of state changes in the row. The image sensor is then illuminated with an unknown light source through the filter and the digital output of the sensor for the row is examined to obtain digital data corresponding to the number of state changes in the row. The intensity of the unknown light source is determined in digital form for the row as a function of the digital data and the known intensity of the reference light source.
Abstract:
Test device apparatus is disclosed containing a electrically conductive region which provides information concerning the nature of the test device and/or its position. In a preferred embodiment a conductive strip is applied to a test device and used to determine the identification of the test device, the position of the test device and/or calibrate an instrument which is used to read the test device. The conductive strip generates a signal by measuring the resistance ratio of the electrical path through its conductive region using three or more electrodes or probes. The signal obtained by the electrodes is used to determine the characteristics indicated above or to program operational parameters within an instrument used to analyze the test device.
Abstract:
A method and apparatus for converting radiant energy levels to digital data wherein an image sensor is provided having at least one row of sensor elements each including a light sensitive capacitor and an access switch and which changes state and produces a corresponding binary output signal when a predetermined charge threshold is exceeded by the capacitor whose charge is a function of intensity and period of an illumination. The row of elements is first calibrated by illuminating same with a reference light source and sensing at a first frequency (F) such that approximately one half of the elements change state and counting the digital output signals corresponding to the changes of state to obtain a first number (B). Thereafter, the row is illuminated with an unknown light source which has a lower radiant energy level than that of the reference light source and senses at a frequency F/2. The digital output signals corresponding to the changes of state are counted to obtain a second number (A). The numbers A and B are compared to produce a digital "1" signal when A > B and a digital "0" when A 1 . The sensing and comparing are repeated for each successive bit N 2 , N 3 ...N k of a K bits of digital data at successive sensing frequencies in accordance with
Abstract:
Test device apparatus is disclosed containing a electrically conductive region which provides information concerning the nature of the test device and/or its position. In a preferred embodiment a conductive strip is applied to a test device and used to determine the identification of the test device, the position of the test device and/or calibrate an instrument which is used to read the test device. The conductive strip generates a signal by measuring the resistance ratio of the electrical path through its conductive region using three or more electrodes or probes. The signal obtained by the electrodes is used to determine the characteristics indicated above or to program operational parameters within an instrument used to analyze the test device.