Abstract:
Disclosed herein is an ion-sensitive field-effect transistor (ISFET) (100) having nanostructures (109) for sensing ions and measuring ion concentration in solutions. In general, the base layer (101) at the sensing region of the ISFET (100) is etched to form the nanostructures (109). Each of the nanostructures (109) has a diameter of less than 100nm, and the nanostructures (109) have a distance of less than 100nm from each other. The nanostructures (109) are nanopillars with cylindrical shape, needle-like shape, or a combination thereof. Due to all these particular features, the surface area of the ISFET (100) that is exposed to ions is increased, and therefore the sensitivity and efficiency of the ISFET (100) are improved. Also disclosed herein is a fabrication method thereof.
Abstract:
The present invention relates to a method (200) of forming graphene bump structure (100) comprising the steps of providing (210) a substrate (10); etching (220) the substrate (10) to form a cavity structure (20); growing (230) a silicon dioxide layer (30) on top of the substrate (10); depositing (240) a thin metal catalyst layer (40) on top of the substrate (30); synthesizing (250) graphene layer (50) on top of the metal catalyst layer (40); depositing (260) an epoxy-based photoresist (60); removing (270) the thin metal catalyst layer (40), the silicon dioxide layer (30) and the epoxy-based photoresist (60) from the substrate (10); and patterning (280) the epoxy-based photoresist (60) to remove from the cavity structure (20) to form the graphene bump structure (100).
Abstract:
The present invention relates to a method (100) of forming graphene nanomesh comprising the steps of providing an oxide layer on top of the substrate (101) as an insulating layer, depositing a metal seed layer on a substrate (102) via physical vapor deposition technique; and growing a graphene layer on the metal seed layer (103) via chemical vapor deposition, whereby said graphene layer grows into the graphene nanomesh on the metal seed layer. The method (100) further comprising a step of transferring the graphene nanomesh to another substrate (104).