Abstract:
A system controller (102) generates and transmits a radio signal having long messages in data frames (370), and short and long messages in control frames (360). A set of selective call radio addresses is included at the beginning of a control frame (360), each selective call radio address including a subvector which indicates the starting position of a short message or a vector packet within the control frame (360). Vector packets indicate starting positions of long messages within the control frame (360), within other control frames (360), and within data frames (370). A selective call radio (106) receives the radio signal and recovers and processes the short and long messages, using the subvectors and vectors to identify the positions of the short and long messages.
Abstract:
A selective call receiver (106) has a frequency synthesizer (708) for scanning a plurality of frequencies to determine a control channel to receive a signal and a receiver (704) for receiving the signal representative of an available frequency associated with a geographic region. The signal includes a channel identifier (404), a frequency assignment (406) and an active channel indicator (408). A processor (712) associates the channel identifier (404) with the frequency assignment (406) in response to the active channel indicator (408) indicating an available frequency of the geographic region and a memory (720) stores channel identifiers (404) associated with frequency assignments (406) designating available frequencies (408). The receiver (704) receives an address (333) and the channel identifier (404) on the control channel, a decoder (714) decodes the channel identifier (404) associated with the frequency assignment (406) to determine the available frequency where a message will be transmitted and the frequency synthesizer (708) switches to the available frequency indicated by the channel identifier (404) for receiving the message.
Abstract:
A selective call receiver (106) has a frequency synthesizer (708) for scanning a plurality of frequencies to determine a control channel to receive a signal and a receiver (704) for receiving the signal representative of an available frequency associated with a geographic region. The signal includes a channel identifier (404), a frequency assignment (406) and an active channel indicator (408). A processor (712) associates the channel identifier (404) with the frequency assignment (406) in response to the active channel indicator (408) indicating an available frequency of the geographic region and a memory (720) stores channel identifiers (404) associated with frequency assignments (406) designating available frequencies (408). The receiver (704) receives an address (333) and the channel identifier (404) on the control channel, a decoder (714) decodes the channel identifier (404) associated with the frequency assignment (406) to determine the available frequency where a message will be transmitted and the frequency synthesizer (708) switches to the available frequency indicated by the channel identifier (404) for receiving the message.
Abstract:
A system controller (102) generates and transmits a radio signal having long messages in data frames (370), and short and long messages in control fames (360). A set of selective call radio addresses is included at the beginning of a control frame (360), each selective call radio address including a subvector which indicates the starting position of a short message or a vector packet within the control frame (360). Vector packets indicate starting positions of long messages within the control frame (360), within other control frames (360), and within data frames (370). A selective call radio (106) receives the radio signal and recovers and processes the short and long messages, using the subvectors and vectors to identify the positions of the short and long messages.
Abstract:
A selective call receiver (106) has a frequency synthesizer (708) for scanning a plurality of frequencies to determine a control channel to receive a signal and a receiver (704) for receiving the signal representative of an available frequency associated with a geographic region. The signal includes a channel identifier (404), a frequency assignment (406) and an active channel indicator (408). A processor (712) associates the channel identifier (404) with the frequency assignment (406) in response to the active channel indicator (408) indicating an availabe frequency of the geographic region and a memory (720) stores channel identifiers (404) associated with frequency assignments (406) designating available frequencies (408). The receiver (704) receives an address (333) and the channel identifier (404) on the control channel, a decoder (714) decodes the channel identifier (404) associated with the frequency assignment (406) to determine the available frequency where a message will be transmitted and the frequency synthesizer (708) switches to the available frequency indicated by the channel identifier (404) for receiving the message.