Abstract:
An Orthogonal Frequency Division Multiplexer (OFDM) transmitter and receiver apparatus consistent with certain embodiments of the present invention receives data to be transmitted and maps (204) a first portion of the data to a first polarization state and a second portion of the data to a second polarization state. A first transmitter (216) transmits the first portion of the data as a set of first OFDM subcarriers using an antenna (230) exhibiting a first polarization. A second transmitter (234) transmits the second portion of the data as a set of second OFDM subcarriers using an antenna (240) exhibiting a second polarization, wherein the first polarization is orthogonal to the second polarization. A receiver apparatus uses a first antenna (302) exhibiting the first polarization and a second antenna (306) exhibiting the second polarization. A first OFDM receiver (310) receives a first set of polarized OFDM subcarriers from the first antenna (302) while a second OFDM receiver (324) receives a second set of polarized OFDM subcarriers from the second antenna (306). A decoder (330) decodes the first and second sets of OFDM subcarriers and combines them into a stream of data.
Abstract:
An Orthogonal Frequency Division Multiplexer (OFDM) transmitter and receiver apparatus consistent with certain embodiments of the present invention receives data to be transmitted and maps (204) a first portion of the data to a first polarization state and a second portion of the data to a second polarization state. A first transmitter (216) transmits the first portion of the data as a set of first OFDM subcarriers using an antenna (230) exhibiting a first polarization. A second transmitter (234) transmits the second portion of the data as a set of second OFDM subcarriers using an antenna (240) exhibiting a second polarization, wherein the first polarization is orthogonal to the second polarization. A receiver apparatus uses a first antenna (302) exhibiting the first polarization and a second antenna (306) exhibiting the second polarization. A first OFDM receiver (310) receives a first set of polarized OFDM subcarriers from the first antenna (302) while a second OFDM receiver (324) receives a second set of polarized OFDM subcarriers from the second antenna (306). A decoder (330) decodes the first and second sets of OFDM subcarriers and combines them into a stream of data.
Abstract:
An Orthogonal Frequency Division Multiplexer (OFDM) transmitter and receiver apparatus consistent with certain embodiments of the present invention receives data to be transmitted and maps (104) a first portion of the data to a first polarization state and a second portion of the data to a second polarization state. A first transmitter (148) transmits the first portion of the data as a set of first OFDM subcarriers using an antenna (160) exhibiting a first polarization. A second transmitter (156) transmits the second portion of the data as a set of second OFDM subcarriers using an antenna (164) exhibiting a second polarization, wherein the first polarization is orthogonal to the second polarization. A receiver apparatus uses a first antenna exhibiting the first polarization and a second antenna exhibiting the second polarization to receive and decode first and second set of OFDM subcarriers and combines them into a stream of data.
Abstract:
A method (600) and simulation tool (200) having enhanced accuracy and speed for simulation using ray launching in a mixed environment (20) by using adaptive ray expansion mechanisms can include a memory (204) coupled to a processor (202). The processor can select (602) a target area within the mixed environment and modify (604) the propagation properties of the adaptive ray expansion mechanisms according to characteristics classified for the target area. The processor can further classify characteristics for the target area by transmitting and reflecting rays for indoor building regions and for outdoor building regions. The number of bounces or a power level threshold assigned to a transmitted ray is a function of the environment where it propagates. The simulation tool can determine the target area or a region of interest by using a global positioning service device (230) externally attached to a device performing functions of the simulation tool.
Abstract:
An Orthogonal Frequency Division Multiplexer (OFDM) transmitter and receiver apparatus consistent with certain embodiments of the present invention receives data to be transmitted and maps (104) a first portion of the data to a first polarization state and a second portion of the data to a second polarization state. A first transmitter (148) transmits the first portion of the data as a set of first OFDM subcarriers using an antenna (160) exhibiting a first polarization. A second transmitter (156) transmits the second portion of the data as a set of second OFDM subcarriers using an antenna (164) exhibiting a second polarization, wherein the first polarization is orthogonal to the second polarization. A receiver apparatus uses a first antenna exhibiting the first polarization and a second antenna exhibiting the second polarization to receive and decode first and second set of OFDM subcarriers and combines them into a stream of data.
Abstract:
A system (100) and method (400) for improving Radio Frequency (RF) Antenna Simulation is provided. The method can include determining (402) a proximity of an antenna (250) to a scattering structure (210), determining (410) a switching distance to the scattering structure that establishes when to switch the antenna on (416) and off (418) from a composite antenna pattern to a free space antenna pattern, and predicting RF coverage of the antenna responsive to the switching. The switching distance can be a function of a material type and a surface geometry of the scattering structure and a wavelength of the antenna. The method can also include evaluating a sensory mismatch in the antenna, and using a composite antenna pattern corresponding to the sensory mismatch.
Abstract:
A method (10 or 500) and system (200) for simulating and improving accuracy of empirical propagation models for radio frequency coverage can include a display (210) and a processor (202) coupled to the display. The processor can be operable to input (502 and 504) low-resolution data and high-resolution data, select (506) an area of interest being simulated for empirical propagation models, and classify (508) receivers as belonging to a predetermined type of object. If a receiver in the area of interest is a low resolution object, then normal losses can be applied (510). If a receiver in the area of interest is a high resolution object, then losses specific to the high resolution object can be applied (512). If a receiver is classified as being inside a building, then the processor can further compute (516) a median power for a location of the receiver and add in-building penetration losses.