Abstract:
A radio device requires a tunable transceiver such that the transceiver can be accurately set to a desired frequency. When a signal with known frequency accuracy is being received, an offset detector can determine the frequency offset generated by the transceiver due to improper tuning. An automatic frequency control (AFC) system (100) is comprised of a tunable transceiver, an offset detector (103) and an AFC control processor (105) for utilizing information from the offset detector to reduce the inaccuracy in frequency by tuning the transceiver towards the received signal frequency. The AFC control processor (105) utilizes one of more threshold levels for defining a maximum correction threshold (311) based upon the desired maximum offset correction. These thresholds are used by the AFC control processor (105) to efficiently control the predetermined frequency range of the tunable transceiver (101) for most efficient operation.
Abstract:
A radio device requires a tunable transceiver such that the transceiver can be accurately set to a desired frequency. When a signal with known frequency accuracy is being received, an offset detector can determine the frequency offset generated by the transceiver due to improper tuning. An automatic frequency control (AFC) system (100) is comprised of a tunable transceiver, an offset detector (103) and an AFC control processor (105) for utilizing information from the offset detector to reduce the inaccuracy in frequency by tuning the transceiver towards the received signal frequency. The AFC control processor (105) utilizes one of more threshold levels for defining a maximum correction threshold (311) based upon the desired maximum offset correction. These thresholds are used by the AFC control processor (105) to efficiently control the predetermined frequency range of the tunable transceiver (101) for most efficient operation.
Abstract:
A technique is used in a wideband wireless communication system (100). In some embodiments available channels are determined (310) and one is selected (315) for assignment to each of a set of communication units based on a relative frequency path loss for each available channel. In some embodiments a communication unit is assigned (505) a channel selected from among available channels and a relative signal loss parameter of the communication unit, such as transmit power, is adjusted (510), based on a relative frequency path loss determined from the channel frequency of the assigned channel. In other embodiments, transmit information is split (705) into a plurality of data streams, each characterized by an associated relative signaling sensitivity, and each data stream is assigned (715) to one of a plurality of the transmit channels, wherein data streams are assigned channels of decreasing channel frequencies in order of decreasing associated relative signaling sensitivities of the data streams.
Abstract:
An antenna system (205) includes an antenna structure (215), a receiver (220), and an antenna system controller (225). The antenna structure includes an arrangement of antennas (237), a signal combiner (240), and a switching matrix (235). The arrangement of antennas is designed to have a set of antenna element separations that are optimized to provide lowest correlation coefficients of intercepted radio signals for a corresponding set of electromagnetic environment types that vary from a very low density scattering environment to a maximum density scattering environment. The antennas (230), (231), (232), (233), (234) in the antenna arrangement each include at least one element that has a common polarization. There is at least one antenna that is a dual polarized antenna. The antenna system selects an antenna element pair that corresponds to the environment type which it is operating and thereby receives a best combined signal.
Abstract:
An antenna system (205) includes an antenna structure (215), a receiver (220), and an antenna system controller (225). The antenna structure includes an arrangement of antennas (237), a signal combiner (240), and a switching matrix (235). The arrangement of antennas is designed to have a set of antenna element separations that are optimized to provide lowest correlation coefficients of intercepted radio signals for a corresponding set of electromagnetic environment types that vary from a very low density scattering environment to a maximum density scattering environment. The antennas (230), (231), (232), (233), (234) in the antenna arrangement each include at least one element that has a common polarization. There is at least one antenna that is a dual polarized antenna. The antenna system selects an antenna element pair that corresponds to the environment type which it is operating and thereby receives a best combined signal.
Abstract:
A technique is used in a wideband wireless communication system (100). In some embodiments available channels are determined (310) and one is selected (315) for assignment to each of a set of communication units based on a relative frequency path loss for each available channel. In some embodiments a communication unit is assigned (505) a channel selected from among available channels and a relative signal loss parameter of the communication unit, such as transmit power, is adjusted (510), based on a relative frequency path loss determined from the channel frequency of the assigned channel. In other embodiments, transmit information is split (705) into a plurality of data streams, each characterized by an associated relative signaling sensitivity, and each data stream is assigned (715) to one of a plurality of the transmit channels, wherein data streams are assigned channels of decreasing channel frequencies in order of decreasing associated relative signaling sensitivities of the data streams.
Abstract:
An antenna system (205) includes an antenna structure (215), a receiver (220), and an antenna system controller (225). The antenna structure includes an arrangement of antennas (237), a signal combiner (240), and a switching matrix (235). The arrangement of antennas is designed to have a set of antenna element separations that are optimized to provide lowest correlation coefficients of intercepted radio signals for a corresponding set of electromagnetic environment types that vary from a very low density scattering environment to a maximum density scattering environment. The antennas (230), (231), (232), (233), (234) in the antenna arrangement each include at least one element that has a common polarization. There is at least one antenna that is a dual polarized antenna. The antenna system selects an antenna element pair that corresponds to the environment type which it is operating and thereby receives a best combined signal.
Abstract:
Communication systems include a transmitter that modulates a radio signal transmitted from two differently polarized antennas during a state time in which a wave state of the radio signal conveys information and is based on one or more polarization states selected from a constellation of polarization states comprising at least three polarization states. The communication system includes a receiver that intercepts the radio signal by two differently polarized antennas during the state time, and demodulates the signal. The polarization states may identify user devices or may quantify a portion of the information intended for a user device.