Abstract:
A field emission display (100) includes a dielectric layer (132) having a plurality of emitter wells (134), a plurality of electron emitters (136) disposed one each within the plurality of emitter wells (134), a plurality of conductive rows (138, 140, 142) disposed on the dielectric layer (132) and having sacrificial portions (154), and ion shield (139) disposed on the dielectric layer (132) and spaced apart from the sacrificial portions (154) of the plurality of conductive rows (138, 140, 142), and an anode (121) opposing the plurality of electron emitters (136) and defining a projected area (122) at the plurality of conductive rows (138, 140, 142). The sacrificial portions (154) of the plurality of conductive rows (138, 140, 142) extend beyond the projected area (122) of the anode (121).
Abstract:
An apparatus (10) for, and method of, placing a plurality of spacers (12) between a parallel opposed anode and cathode (20) of an emissive display includes temporarily securing, by applying a vacuum for example, a first side of one of the anode or cathode to a base (14) having a plurality of electromagnets (16) positioned therein. The electromagnets (16) attract a first side of each of the plurality of spacers (12), thereby positioning each of the spacers (12) in a desired location on a second side of the one of the anode or cathode (20). The spacers (12) may be provided from a shuffling tray (40) having a plurality of openings (42), each opening (42) approximately aligned with one of the electromagnets (16) and shaped so as to present the first side to the electromagnet (16) to the one of the anode or cathode (20).