Abstract:
An improved hydrogen storage medium in the form of a fabric (124, 504, 704) comprises a yarn (300, 400) that includes carbon nanofibers or carbon nanotubes (302, 404) and elastomeric fibers (304, 402). The fabric (124, 504, 704) is volume efficient arrangement of the he carbon nanofibers or carbon nanotubes (302, 404) and is consequently characterized as a high density energy storage medium. According a preferred embodiment an hydrogen storage device (100) comprises a flexible container (104) that includes the fabric (124). The flexibility of the container (104) in combination with the flexibility of the fabric (124) allows the hydrogen storage device 100 to be accommodate in irregularly shaped spaces. According to an embodiment of the invention a battery (700) that uses the fabric (704) as a hydrogen storing anode is provided.
Abstract:
The fuel cells (110) consists of one or more fuel cells (110), each having a major surface (140), and disposed next to each other in a side-by-side adjacent arrangement and a fuel storage container (120) having an exterior wall (150). The fuel cells (110) are positioned such that distance between the major surfaces (140) and the fuel storage container wall (150) along a direction normal to the major surfaces is substantially the same. In addition, one or more of the fuel cells are in thermal contact with the fuel storage container such that cell waste heat is transferred to the fuel storage container. During typical operation, a change in an operational parameter of the fuel cell system such as power output causes a change in the amount of waste heat generated in the fuel cell and the waste heat is transferred to the fuel storage container.
Abstract:
A fuel cell power source ( 100 ) for use in electronic systems includes a fuel cell system ( 130 ) and a controller ( 150 ). The controller ( 150 ) computes net power requirements of a load device from one or more power functional information sources; and determines an operating point of the fuel cell system ( 130 ) by matching the net power requirements with the power characteristics of the fuel cell system ( 130 ).
Abstract:
A fuel cell device has a composite particle electrode (200) formed using particles (210) having a combination of ion conductor material, electron conductor material, and catalyst material. Each composite particle (210) is preferably formed to have a substantially spherical outer layer (480) of ion conductor material (481) with conductive and catalyst particles (482, 484) are dispersed throughout the outer layer (480). An array of composite particles (210) is layered in a substantially structured or ordered manner on a membrane support structure (220) to form the fuel cell electrode. A fuel cell electrode so formed has interstitial gaps between the composite particles that result in a structure permeable to oxygen and other fluids.
Abstract:
An improved hydrogen storage medium in the form of a fabric (124, 504, 704) comprises a yarn (300, 400) that includes carbon nanofibers or carbon nanotubes (302, 404) and elastomeric fibers (304, 402). The fabric (124, 504, 704) is a volume efficient arrangement of the carbon nanofibers or carbon nanotubes (302, 404) and is consequently characterized as a high density energy storage medium. According to a preferred embodiment a hydrogen storage device (100) comprises a flexible container (104) that includes the fabric (124). The flexibility of the container (104) in combination with the flexibility of the fabric (124) allows the hydrogen storage device 100 to be accommodated in irregularly shaped spaces. According to an embodiment of the invention a battery (700) uses the fabric (704) as a hydrogen storing anode.
Abstract:
A device housing (20) for a portable electronic device (10) includes an outer visible surface (30). At least one portion (35) of the outer visible surface (30) is composed of one or more optical fibers (40). The one or more optical fibers (40) are illuminated using a light source coupled to at least one end of the one or more optical fibers (40) to provide decorative characteristics and operational functions.
Abstract:
Fluxing compositions containing compounds that generate acids upon photoinitiation from a light source such as Hg/Xe ultraviolet (UV) light sources are described. The acids clean oxides from the printed circuit boards (PCBs) under assembly and then volatilize with little or no need for a cleaning step, or cleaning only with water. The compounds that release an oxide removing agent, sometimes called a "photoacid" include metal and organic onium salts and furyl compounds bearing a carbonyl group. Such fluxing compositions can be used mixed with typical solder formulations, such as lead/tin solders, or applied topically thereto; both techniques permit the assembly of PCBs more easily and with high quality bonds.
Abstract:
A membrane electrode assembly consists of a polymer electrolyte membrane (100) with an electrode on each side. The polymer electrolyte membrane has an integral sensor (115) disposed on the surface. The sensor monitors the physical, thermal, chemical or electrical state of the membrane electrode assembly. Information obtained from the sensor is used to identify a defective membrane electrode assembly, and the operation of the fuel cell is altered based on the identified defective membrane electrode assembly.
Abstract:
A membrane electrode assembly consists of a polymer electrolyte membrane (100) with an electrode on each side. The polymer electrolyte membrane has an integral sensor (115) disposed on the surface. The sensor monitors the physical, thermal, chemical or electrical state of the membrane electrode assembly. Information obtained from the sensor is used to identify a defective membrane electrode assembly, and the operation of the fuel cell is altered based on the identified defective membrane electrode assembly.
Abstract:
Oxides of carbon and other impurities are removed from a hydrogen fuel suppl y stream (12) for a fuel cell (30). A getter element (20) sufficient for chemisorbing the oxides of carbon from th e hydrogen is removably connected to the fuel cell anode side. The fuel stream is passed through the getter element so as to chemisor b the oxides of carbon onto the getter, thereby providing a purified stream of hydrogen (26) to the fuel cell anode. The getter is removed from the fuel cell when the getter when spent and replaced with a fresh getter.