Abstract:
A system and method to facilitate path selection in a multihop network includes receiving by a base station a path metric associated with each of a plurality of stations neighboring to a subscriber station; comparing each of the path metrics with a current path metric; and transmitting a path selection recommendation from the base station to the subscriber station when one of the compared path metrics is better than the current path metric.
Abstract:
A method of operation of a communication device. A first communication module is operatively coupled to a second communication module within the communication device. The second communication module is designed for carrier sensing. An instruction is communicated from the first communication module to the second communication module to begin sensing a channel on behalf of the first communication module. Next, the first communication module is informed of channel activity status by the second communication module. Thereafter, the first communication module transmits on the channel when no activity is detected on the channel.
Abstract:
A multihop network includes at least one base station and a plurality of relay stations, Within each relay station, a method to facilitate path selection includes: maintaining a base station path metric from the relay station to the base station; maintaining a relay station link metric from the relay station to each of a plurality of other relay stations; comparing the current base station path metric and each of the other base station path metrics through the plurality of other relay stations; and selecting a path for routing messages from the relay station to the base station using the comparing step.
Abstract:
A multihop network includes at least one base station and a plurality of relay stations, Within each relay station, a method to facilitate path selection includes: maintaining a base station path metric from the relay station to the base station; maintaining a relay station link metric from the relay station to each of a plurality of other relay stations; comparing the current base station path metric and each of the other base station path metrics through the plurality of other relay stations; and selecting a path for routing messages from the relay station to the base station using the comparing step.
Abstract:
The present invention provides a system and method for multihop packet forwarding within a multihop wireless communication network. The method uses a data frame format including at least the four address fields to forward packets in a multihop wireless network. The method includes generating a route request packet at a routable device in response to receiving a packet destined for an unknown destination. The route request packet includes an originating device field including an address of an originating device, wherein the originating device generated the packet originally; and a source field, wherein the source field includes an address of the first routable device which generated the route request packet.
Abstract:
A system and method to facilitate path selection in a multihop network includes receiving by a base station a path metric associated with each of a plurality of stations neighboring to a subscriber station; comparing each of the path metrics with a current path metric; and transmitting a path selection recommendation from the base station to the subscriber station when one of the compared path metrics is better than the current path metric.
Abstract:
Techniques are provided for improving broadcast efficiency in a multihop network having a base station which transmits a downlink signal, at least one relay station and at least one node associated with the relay station. The relay station relays or retransmits the downlink signal it receives from the base station to nodes associated with the relay station. The base station monitors downlink transmission metrics provided by each of the nodes associated with the relay station. Each downlink transmission metric provides a measure of the downlink signal received by a particular node from the base station. Based on the downlink transmission metrics, the base station can decide if the relay station should continue to relay or retransmit the downlink signal to the nodes associated with the relay station.
Abstract:
A communication network includes a base station, a relay station, and a subscriber station. The base station is communicatively coupled to a backhaul for routing one or more messages through the backhaul to a destination. The relay station is communicatively coupled to the base station and further communicatively coupled to an alternate backhaul. The relay station includes a relay station mode of operation for relaying messages between the base station and the subscriber station, and a base station mode of operation for other messages from the subscriber station through the alternate backhaul to the destination. The subscriber station is communicatively coupled to the base station and further communicatively coupled to relay station.
Abstract:
A CS fallback procedure handles conflict that may arise when handover operations occur during CS fallback. If CS fallback is initiated for an access terminal and handover of that access terminal is then initiated before the CS fallback completes, the target for the handover is informed of the CS fallback so that the target may perform the appropriate CS fallback operations.
Abstract:
A system and method for increasing the capacity of a wireless network (100, 300) including a plurality of access points (APs) (106, 305) and a plurality of nodes (200), at least one of said nodes (200) and at least one of said APs (106, 305) including multiple radios (310), the method comprising: (i) determining the routing metrics to one of said APs through each radio interface that is common between one of the nodes and that AP; (ii) selecting the radio interface whose routing metrics meet a desired criteria for packet stream transmission between the at least one node and the AP; and (iii) transmitting at least one packet stream from the node to the AP through the selected radio interface.