Abstract:
An electroluminescent display contains an array of dynamically addressable pixels. The pixels are arranged on one side of a carrier substrate. Conductive vias in the substrate are electrically connected to each of the pixels. Each pixel consists of a bottom electrode that is coupled to a via, an electroluminescent material, and a dielectric material. A common top electrode is disposed on the dielectric material. A driver circuit conductor or connector is situated on the other side of the substrate and is electrically coupled to each of the conductive vias and to the common top electrode, so that each pixel can be individually addressed to illuminate the electroluminescent material on individual pixels.
Abstract:
An apparatus includes a top plate [245] of a first transparent conductive material, a middle plate [225] of a second transparent conductive material, and a bottom plate [205] of conductive material. At least one upper dielectric layer [240] is disposed between the top plate [245] and the middle plate [225], and at least one lower dielectric layer [215] disposed between the bottom plate [205] and the middle plate [225]. A first electroluminescent layer [235] is disposed between the top plate [245] and the middle plate [225]. The first electroluminescent layer [235] has a first predetermined pattern. A second electroluminescent layer [215] is disposed between the middle plate [225] and the bottom plate [205]. The second electroluminescent layer [215] has a second predetermined pattern. The first electroluminescent layer [235] and the second electroluminescent layer [215] are powered by at least one alternating current power source to selectively display a simulated motion.
Abstract:
An electrochemical cell is provided with first and second electrodes (50), and a solid polymer electrolyte disposed therebetween. The electrodes may either be of the same or different material and may be fabricated from ruthenium, iridium, cobalt, tungsten, vanadium, iron, molybdenum, hafnium, nickel, silver, zinc, and combinations thereof. The solid polymer electrolyte is in intimate contact with both the anode and cathode, and is made from a polymeric support structure having dispersed therein an electrolyte active species. The polymeric support structure is preferably a multi-layered support structure which includes a first polymeric layer (30), having first and second major surfaces (32, 34). Disposed on at least one, and preferably both surfaces is a layer of a different, second polymeric material (36, 38). The second polymeric material is preferably more formable than the first polymer layer so that it can easily fill pores (40, 42, 44, 46, 48) in the adjacent electrodes (50).
Abstract:
An electroluminescent display contains an array of dynamically addressable pixels. The pixels are arranged on one side of a carrier substrate. Conductive vias in the substrate are electrically connected to each of the pixels. Each pixel consists of a bottom electrode that is coupled to a via, an electroluminescent material, and a dielectric material. A common top electrode is disposed on the dielectric material. A driver circuit conductor or connector is situated on the other side of the substrate and is electrically coupled to each of the conductive vias and to the common top electrode, so that each pixel can be individually addressed to illuminate the electroluminescent material on individual pixels.
Abstract:
A method and apparatus are provided to aide in emergency egress of a structure. More particularly, egress indicators are co-located with hazard sensors. During detection of a hazard condition, locations of sensors detecting the hazard are identified and a pathway directing traffic away from the hazard is determined. Finally, the egress indicators are operated to direct traffic down the determined pathway.
Abstract:
An alternating current (AC) powered self organizing wireless node (100, 400, 600) includes a self organizing wireless receiver-transmitter (115), an AC branch connection (105), an AC to direct current (DC) converter (110), a secondary power function (120), and a housing (150). The self organizing wireless receiver-transmitter can communicate information throughout a network of compatible self organizing nodes solely using radio transmission to and reception from nearby self-organizing nodes. The secondary power function can couple power to the AC to DC converter for powering the self organizing wireless receiver-transmitter when AC power is not provided. The AC powered self organizing wireless node is designed and fabricated for agency certification. The AC powered self organizing wireless node may include one or more sensors (125), sensor inputs (135), transducers (130), or control outputs (155).