Abstract:
An energy storage system (10) including a first energy storage device (12), such as a secondary or rechargeable battery, and a second energy storage device (14), such as an electrochemical capacitor. The electrochemical capacitor provides intermittent energy bursts to satisfy the power required of, for example, pulsed power communication devices. Such devices typically require power pulses in excess of those which conventional battery cells can easily provide for numerous cycles. The system (10) further includes circuitry (16) for coupling the capacitor (14) to a load in response to changes in the battery (12).
Abstract:
A hybrid energy storage system (10) including a first energy storage device (12), such as a secondary or rechargeable battery, and a second energy storage device (14), such as an electrochemical capacitor. The electrochemical capacitor provides intermittent energy bursts to satisfy the power requires of, for example, pulsed power communication devices. Such devices typically require power pulses in excess of those which conventional battery cells can easily provide for numerous cycles. The first and second energy storage devices may be coupled to output electronics to condition the output of the devices prior to delivering it to the application device.
Abstract:
High energy density aqueous pseudocapacitors may be achieved by providing such devices with dissimilar transition metal oxide electrodes. The transition metal oxide electrodes are particularly adapted for use as the anode (20) of a pseudocapacitor device (10).
Abstract:
A hybrid energy storage system (10) includes a first energy storage device (12), such as a secondary or rechargeable battery, and a second energy storage device (14), such as an electrochemical capacitor. The electrochemical capacitor provides intermittent energy burst to satisfy the power requirements of, for example, pulsed power communication devices. The first and second energy storage devices are coupled to a current controller (16) to assure that the pulse transients are not applied to the battery cell as a result of charging the capacitor.
Abstract:
The invention provides for an improved pseudocapacitive device (10) having dissimilar electrodes (20 and 40). The first electrode (20) stores electrochemical charge via a double layer electrochemical mechanism, while the second electrode stores electrochemical charge via an oxidation/reduction reaction.
Abstract:
A rechargeable battery cell (10) has an integral vibrating means. The cell has a positive electrode (14), a negative electrode (16), and an electrolyte (18) disposed between the two electrodes. The electrolyte contains a piezoelectric material (20) that vibrates when subjected to an alternating electric field. In one embodiment, at least one of the electrodes contains a piezoelectric material that functions as a vibrating means when subjected to an alternating electric field. In another embodiment, a piezoelectric material that functions as a vibrating means when subjected to an alternating electric field is attached as part of a current collector (22) to at least one of the electrodes. The piezoelectric material performs an additional function of being an electronic insulator for the purpose of stacking the cells.
Abstract:
A system for charging a battery (100) includes a power supply (200) and a vibrating mechanism (210). The power supply provides current to the battery in order to charge the battery while the vibrating mechanism simultaneously vibrates the battery to increase the deliverable capacity of the battery. A system for discharging a battery includes an electrical load (300) and a vibrating mechanism (210). The load is electrically connected to the battery and the vibrating mechanism vibrates the battery while the battery is being discharged.
Abstract:
A secondary battery (100) includes a cell (110) having a positive terminal (115) and a negative terminal (120), a device (130, 140) for coupling the positive terminal (115) to the negative terminal (120) in response to swelling of the cell (100), and a fuse (125) coupled between the positive terminal (115) and the negative terminal (120) in response to swelling of the cell (110). According to another aspect of the present invention, a secondary battery (700) has external contacts (150, 155) and includes a cell (110) having a positive terminal (115) and a negative terminal (120) that are coupled to the external contacts (150, 155) during normal cell operation. In response to swelling of the cell (110), a device (705, 720, 725, 730, 735) decouples at least one of the positive and negative terminals (115, 120) from at least one of the external contacts (150, 155) in response to swelling of the cell (110).
Abstract:
An energy storage system (10) including a first energy storage device (12), such as a secondary or rechargeable battery, and a second energy storage device (14), such as an electrochemical capacitor. The electrochemical capacitor provides intermittent energy bursts to satisfy the power required of, for example, pulsed power communication devices. Such devices typically require power pulses in excess of those which conventional battery cells can easily provide for numerous cycles. The system (10) further includes circuitry (16) for coupling the capacitor (14) to a load in response to changes in the battery (12).
Abstract:
An energy storage system (10) including a first energy storage device (12), such as a secondary or rechargeable battery, and a second energy storage device (14), such as an electrochemical capacitor. The electrochemical capacitor provides intermittent energy bursts to satisfy the power required of, for example, pulsed power communication devices. Such devices typically require power pulses in excess of those which conventional battery cells can easily provide for numerous cycles. The system (10) further includes circuitry (16) for coupling the capacitor (14) to a load in response to changes in the battery (12).