Abstract:
A system for a pipeline cascaded content addressable memory CAM system for sequentially processing input data includes an input register, a CAM core, cascade logic and an output register. As the memory association functions produce matches in the CAM core, the cascade logic in parallel composites data associated with each matching CAM core. Each cascade processes a separate data input simultaneously then passes on the cumulative results to the next stage.
Abstract:
The present invention encompasses a method of storing ternary data that includes the steps of (1) initializing a conversion register by storing binary-to-ternary mask data in a conversion register; (2) storing ternary data in a content addressable memory (CAM) by inputting a single bit binary data to the conversion register, and converting the binary data into two bits of ternary data using the conversion register; and (3) simultaneously storing the two bits of ternary data in first and second memory cells. For subsequent searching, the method further includes the steps of searching for a match of input search binary data to the stored contents of the CAM; providing a match valid output responsive to the input search binary bits matching any of the stored contents; and generating an address corresponding to a location in the CAM where the match is found.
Abstract:
In order to multiplex a plurality of various rate subchannels onto a fixed rate channel, a frame structure is defined consisting of j sets of i-tuples for a total of ij bits per frame, the parameters i and j being mathematically determined as a function of the rate of the subchannels and the rate of the fixed channel. For j-1 of the i-tuples, i-1 bits are used for information and the last bit is set ONE. In one i-tuple all i bits are set ZERO. Framing is detected by monitoring for a ONE followed by i ZEROes, a pattern which cannot occur elsewhere in the frame regardless of the data. An integral number of information bits from each subchannel are distributed in the (i-1) (j-1) information bit positions. In the disclosed embodiment two 666-2/3 bps channels and a 4800 bps channel are multiplexed onto an 8000 bps channel using a frame structure consisting of 24 quintets. In the 92 information bit positions, 72 bits are allocated for the 4800 bps channel and 10 bits each are allocated for the 666-2/3 bps channels. The multiplexer shifts the input bits through shift registers (403, 404, 406) and selects (407) for output at the 8000 bps rate one of the stored input bits or a set ONE or ZERO as determined by a sequencer (410). The demultiplexer shifts the bits in the multiplexed bit streams through a shift register (802) and selects (814) as determined by a sequencer (813) appropriate stored bits for output in the demultiplexed bit streams. Framing is maintained by a pattern detector (804) which is responsive to only a ONE followed by five ZEROes in the multiplexed stream.