Search Relevance Model Using Self-Adversarial Negative Sampling

    公开(公告)号:US20230252549A1

    公开(公告)日:2023-08-10

    申请号:US18107854

    申请日:2023-02-09

    CPC classification number: G06Q30/0631 G06Q30/0201

    Abstract: To train an embedding-based model to determine relevance between items and queries, an online system generates training data from previously received queries and interactions with results for the queries. The training data includes positive training examples including a query and an item with which a user performed a specific interaction after providing the query. To generate negative training examples for the query to include in the training data, the online system determines measures of similarity between items with which the specific interaction was not performed and the query. The online system may weight a loss function for the embedding-based model by the measure of similarity for a negative example, increasing the effect of a negative example including a query and an item with a larger measure of similarity. In other embodiments, the online system selects negative training examples based on the measures of similarities between items and queries in pairs.

Patent Agency Ranking