Abstract:
Fluidic cartridges, and manufacture thereof, having a plurality of circuit element subtypes containing pneumatically operated diaphragm members, where the diaphragm materials are selected for yield point, chemical resistance, breathability and other properties individually according to the fluidic element subtype are provided. A process of in-situ edge-bonded decoupage for forming diaphragm members inside a cartridge, and fluidic circuits having diaphragm members as active and passive circuit elements, including pumps, valves, vents, waste receptacles, reagent reservoirs, and cuvettes with optical windows, where the material composition of each individual diaphragm member may be selected from an assortment of materials during manufacture are also provided.
Abstract:
Disclosed is a microassay testing system, including a microfluidic cartridge and a compact microprocessor-controlled instrument for fluorometric assays in liquid samples, the cartridge having integrated process controls and positive and negative assay controls. The instrument has a scanning detector head incorporating multiple optical channels. In a preferred configuration, the assay is validated using dual channel optics for monitoring a first fluorophore associated with a target analyte and a second fluorophore associated with a process control. Integrated positive and negative assay controls provide enhanced assay validation capabilities and facilitate analysis of test results. Applications include molecular biological assays based on PCR amplification of target nucleic acids and fluorometric assays in general.
Abstract:
A microfluidic mixing device comprising two bellows pumps (105, 115), microfluidic cartridges comprising the same and methods for use of the same are provided. The disclosed device enables efficient mixing of samples at the microfluidic scale. More particularly, the microfluidic mixing device comprises: a first bellows pump (105); a second bellows pump (115); a first microchannel fluidly interconnecting the first bellows pump (105) with a sample inlet and a reagent reservoir, wherein the first microchannel comprises a valve (V10) interposed between the pump and the inlet, and a valve (V1) interposed between the pump and the reservoir; a second microchannel fluidly interconnecting the first bellows pump (105) with the second bellows pump (115), wherein the second micro channel comprises a valve (V11) interposed between the first and second pump; a third microchannel fluidly interconnecting the first bellows pump (105) with the second bellows pump, wherein the third micro channel comprises a valve (V11) interposed between the first and second pump; a first and second pneumatic member pneumatically connected to the first and second bellows pumps; wherein, the volume of the second bellows pump (115) is greater than the volume of the first bellows pump (105).
Abstract:
A specimen collection and delivery apparatus for collecting clinical specimens and delivery of samples thereof to, e.g., microfluidic testing devices for diagnostic analysis is disclosed. The specimen collection and delivery apparatus includes a closure housing for coupling with a sample tube at one end, an open luer for coupling with a complementary luer on a microfluidic device at the other end, and a filter matrix disposed in the interior. The filter matrix is air permeable and liquid impermeable at atmospheric pressure and prevents sample from flowing through the open luer end when coupled to a sample tube containing a specimen. Under vacuum, the liquid sample fraction of the specimen can be drawn through the filter matrix and into the microfluidic testing device through the luer connection for diagnostic analysis.
Abstract:
A microfluidic mixing device comprising two bellows pumps (105, 115), microfluidic cartridges comprising the same and methods for use of the same are provided. The disclosed device enables efficient mixing of samples at the microfluidic scale. More particularly, the microfluidic mixing device comprises: a first bellows pump (105); a second bellows pump (115); a first microchannel fluidly interconnecting the first bellows pump (105) with a sample inlet and a reagent reservoir, wherein the first microchannel comprises a valve (V10) interposed between the pump and the inlet, and a valve (V1) interposed between the pump and the reservoir; a second microchannel fluidly interconnecting the first bellows pump (105) with the second bellows pump (115), wherein the second micro channel comprises a valve (V11) interposed between the first and second pump; a third microchannel fluidly interconnecting the first bellows pump (105) with the second bellows pump, wherein the third micro channel comprises a valve (V11) interposed between the first and second pump; a first and second pneumatic member pneumatically connected to the first and second bellows pumps; wherein, the volume of the second bellows pump (115) is greater than the volume of the first bellows pump (105).
Abstract:
Disclosed is a microassay testing system, including a microfluidic cartridge and a compact microprocessor-controlled instrument for fluorometric assays in liquid samples, the cartridge having integrated process controls and positive and negative assay controls. The instrument has a scanning detector head incorporating multiple optical channels. In a preferred configuration, the assay is validated using dual channel optics for monitoring a first fluorophore associated with a target analyte and a second fluorophore associated with a process control. Integrated positive and negative assay controls provide enhanced assay validation capabilities and facilitate analysis of test results. Applications include molecular biological assays based on PCR amplification of target nucleic acids and fluorometric assays in general.
Abstract:
A specimen collection and delivery apparatus for collecting clinical specimens and delivery of samples thereof to, e.g., microfluidic testing devices for diagnostic analysis is disclosed. The specimen collection and delivery apparatus includes a closure housing for coupling with a sample tube at one end, an open luer for coupling with a complementary luer on a microfluidic device at the other end, and a filter matrix disposed in the interior. The filter matrix is air permeable and liquid impermeable at atmospheric pressure and prevents sample from flowing through the open luer end when coupled to a sample tube containing a specimen. Under vacuum, the liquid sample fraction of the specimen can be drawn through the filter matrix and into the microfluidic testing device through the luer connection for diagnostic analysis.
Abstract:
Fluidic cartridges, and manufacture thereof, having a plurality of circuit element subtypes containing pneumatically operated diaphragm members, where the diaphragm materials are selected for yield point, chemical resistance, breathability and other properties individually according to the fluidic element subtype are provided. A process of in-situ edge-bonded decoupage for forming diaphragm members inside a cartridge, and fluidic circuits having diaphragm members as active and passive circuit elements, including pumps, valves, vents, waste receptacles, reagent reservoirs, and cuvettes with optical windows, where the material composition of each individual diaphragm member may be selected from an assortment of materials during manufacture are also provided.