Abstract:
A system and method of sorting mineral streams, for example laterite mineral ores, into appropriately classified valuable and waste streams for maximum recovery of value from the mineral stream, e.g., a stream of minerals includes receiving response data indicating reflected, absorbed or backscattered energy from a mineral sample exposed to a sensor, where the mineral sample is irradiated with electromagnetic energy. The system determines spectral characteristics of the mineral sample by performing spectral analysis on the response data of the mineral sample and identifies a composition of the mineral sample by comparing the spectral characteristics of the mineral sample to previously developed spectral characteristics of samples of known composition. The system then generates a sort decision for the mineral sample based on the comparison, where the sort decision is used in diverting the mineral sample to a desired destination e.g. pyrometallurgical treatment stages, or to a waste stream.
Abstract:
A system and method of sorting mineral streams, for example laterite mineral ores, into appropriately classified valuable and waste streams for maximum recovery of value from the mineral stream, e.g., a stream of minerals includes receiving response data indicating reflected, absorbed or backscattered energy from a mineral sample exposed to a sensor, where the mineral sample is irradiated with electromagnetic energy. The system determines spectral characteristics of the mineral sample by performing spectral analysis on the response data of the mineral sample and identifies a composition of the mineral sample by comparing the spectral characteristics of the mineral sample to previously developed spectral characteristics of samples of known composition. The system then generates a sort decision for the mineral sample based on the comparison, where the sort decision is used in diverting the mineral sample to a desired destination e.g. pyrometallurgical treatment stages, or to a waste stream.
Abstract:
Methods and systems for achieving higher efficiencies and capacities in sorting feed material are described herein, such as for separating desirable “good” rock or ore from undesirable “bad” rock or ore in an unsegregated, unseparated stream of feed material. In the disclosure, higher efficiencies are achieved with combinations of multiple sensor/diverter cells in stages in a cascade arrangement. The number and combination of cells in the cascade may be determined through a priori characterization of probabilities involved in sensor/rock and rock/diverter interactions, and mathematical determinations of the optimal number and combination of stages based on this probability. Further, as disclosed herein, desired sorting capacities are achieved through addition of multiple cascades in parallel until the desired sorting capacity is reached.
Abstract:
Methods and systems for achieving higher efficiencies and capacities in sorting feed material are described herein, such as for separating desirable “good” rock or ore from undesirable “bad” rock or ore in an unsegregated, unseparated stream of feed material. In the disclosure, higher efficiencies are achieved with combinations of multiple sensor/diverter cells in stages in a cascade arrangement. The number and combination of cells in the cascade may be determined through a priori characterization of probabilities involved in sensor/rock and rock/diverter interactions, and mathematical determinations of the optimal number and combination of stages based on this probability. Further, as disclosed herein, desired sorting capacities are achieved through addition of multiple cascades in parallel until the desired sorting capacity is reached.
Abstract:
Methods and systems for achieving higher efficiencies and capacities in sorting feed material are described herein, such as for separating desirable “good” rock or ore from undesirable “bad” rock or ore in an unsegregated, unseparated stream of feed material. In the disclosure, higher efficiencies are achieved with combinations of multiple sensor/diverter cells in stages in a cascade arrangement. The number and combination of cells in the cascade may be determined through a priori characterization of probabilities involved in sensor/rock and rock/diverter interactions, and mathematical determinations of the optimal number and combination of stages based on this probability. Further, as disclosed herein, desired sorting capacities are achieved through addition of multiple cascades in parallel until the desired sorting capacity is reached.
Abstract:
A system and method of sorting mineral streams, for example laterite mineral ores, into appropriately classified valuable and waste streams for maximum recovery of value from the mineral stream, e.g., a stream of minerals includes receiving response data indicating reflected, absorbed or backscattered energy from a mineral sample exposed to a sensor, where the mineral sample is irradiated with electromagnetic energy. The system determines spectral characteristics of the mineral sample by performing spectral analysis on the response data of the mineral sample and identifies a composition of the mineral sample by comparing the spectral characteristics of the mineral sample to previously developed spectral characteristics of samples of known composition. The system then generates a sort decision for the mineral sample based on the comparison, where the sort decision is used in diverting the mineral sample to a desired destination e.g. pyrometallurgical treatment stages, or to a waste stream.
Abstract:
A system and method of sorting mineral streams, for example laterite mineral ores, into appropriately classified valuable and waste streams for maximum recovery of value from the mineral stream, e.g., a stream of minerals includes receiving response data indicating reflected, absorbed or backscattered energy from a mineral sample exposed to a sensor, where the mineral sample is irradiated with electromagnetic energy. The system determines spectral characteristics of the mineral sample by performing spectral analysis on the response data of the mineral sample and identifies a composition of the mineral sample by comparing the spectral characteristics of the mineral sample to previously developed spectral characteristics of samples of known composition. The system then generates a sort decision for the mineral sample based on the comparison, where the sort decision is used in diverting the mineral sample to a desired destination e.g. pyrometallurgical treatment stages, or to a waste stream.
Abstract:
Methods and systems for achieving higher efficiencies and capacities in sorting feed material are described herein, such as for separating desirable “good” rock or ore from undesirable “bad” rock or ore in an unsegregated, unseparated stream of feed material. In the disclosure, higher efficiencies are achieved with combinations of multiple sensor/diverter cells in stages in a cascade arrangement. The number and combination of cells in the cascade may be determined through a priori characterization of probabilities involved in sensor/rock and rock/diverter interactions, and mathematical determinations of the optimal number and combination of stages based on this probability. Further, as disclosed herein, desired sorting capacities are achieved through addition of multiple cascades in parallel until the desired sorting capacity is reached.
Abstract:
A system and method of sorting mineral streams, for example laterite mineral ores, into appropriately classified valuable and waste streams for maximum recovery of value from the mineral stream, e.g., a stream of minerals includes receiving response data indicating reflected, absorbed or backscattered energy from a mineral sample exposed to a sensor, where the mineral sample is irradiated with electromagnetic energy. The system determines spectral characteristics of the mineral sample by performing spectral analysis on the response data of the mineral sample and identifies a composition of the mineral sample by comparing the spectral characteristics of the mineral sample to previously developed spectral characteristics of samples of known composition. The system then generates a sort decision for the mineral sample based on the comparison, where the sort decision is used in diverting the mineral sample to a desired destination e.g. pyrometallurgical treatment stages, or to a waste stream.