Abstract:
A dye-sensitized solar cell with hybrid nanostructures comprises a negative-polarity conductive substrate, a metal oxide layer, a positive-polarity conductive substrate and an electrolyte. The metal oxide layer has a plurality of nanoparticles and a plurality of nanotubes. The metal oxide layer and the electrolyte are arranged between the negative-polarity conductive substrate and the positive-polarity conductive substrate. The nanoparticles increase contact area with dye and thus enhance power generation efficiency. The nanotubes increase carrier mobility and thus effectively transfer electricity to electrodes. The solar cell integrates the advantages of nanoparticles and nanotubes and offsets the disadvantages thereof to effectively enhance the photovoltaic conversion efficiency of dye-sensitized solar cells.
Abstract:
A composite dye-sensitized solar cell comprises a conductive substrate, and also a nanoparticle compact layer, a nanotube layer and a nanoparticle scattering layer which are stacked on the conductive substrate sequentially, and further an auxiliary electrode stacked on one side of the nanoparticle scattering layer far away from the conductive substrate, and a composite dye and an electrolyte filled into a space between the conductive substrate and the auxiliary electrode. The composite dye includes at least one short-wavelength light absorption dye and at least one long-wavelength light absorption dye. The nanoparticle compact layer can increase the contact area with the composite dye and further enhance the power generation efficiency. The nanotube layer can transmit the generated electric energy to the external electrodes efficiently. The composite dye can absorb light with different wavelength ranges. Therefore is effectively improved the photovoltaic conversion efficiency of the dye-sensitized solar cell (DSSC).
Abstract:
A dye-sensitized solar cell with hybrid nanostructures comprises a negative-polarity conductive substrate, a metal oxide layer, a positive-polarity conductive substrate and an electrolyte. The metal oxide layer has a plurality of nanoparticles and a plurality of nanotubes. The metal oxide layer and the electrolyte are arranged between the negative-polarity conductive substrate and the positive-polarity conductive substrate. The nanoparticles increase contact area with dye and thus enhance power generation efficiency. The nanotubes increase carrier mobility and thus effectively transfer electricity to electrodes. The solar cell integrates the advantages of nanoparticles and nanotubes and offsets the disadvantages thereof to effectively enhance the photovoltaic conversion efficiency of dye-sensitized solar cells.