SOLAR CELL WITH ANTI-REFLECTION STRUCTURE AND METHOD FOR FABRICATING THE SAME
    1.
    发明申请
    SOLAR CELL WITH ANTI-REFLECTION STRUCTURE AND METHOD FOR FABRICATING THE SAME 审中-公开
    具有抗反射结构的太阳能电池及其制造方法

    公开(公告)号:US20140311568A1

    公开(公告)日:2014-10-23

    申请号:US13868871

    申请日:2013-04-23

    Abstract: A solar cell with an anti-reflection structure comprises a solar cell substrate, a meshed electric-conduction layer formed on one surface of the solar cell substrate, a plurality of microspheres disposed on the meshed electric-conduction layer, and a dielectric layer. The microspheres have a diameter of 0.1-50 μm. The dielectric layer is formed between the meshed electric-conduction layer and the microspheres, and has a thickness smaller than the diameter of the microspheres to make the microspheres protrude from the dielectric layer. The meshed electric-conduction layer is formed via a screen-printing method. The present invention uses the microspheres and the meshed electric-conduction layer to achieve an excellent anti-reflection effect. Further, the present invention has the advantages of a simple fabrication process and a low fabrication cost.

    Abstract translation: 具有防反射结构的太阳能电池包括太阳能电池基板,形成在太阳能电池基板的一个表面上的网状导电层,设置在网状导电层上的多个微球体和电介质层。 微球的直径为0.1-50μm。 介电层形成在网状导电层和微球之间,其厚度比微球的直径小,以使微球从电介质层突出。 网状导电层通过丝网印刷法形成。 本发明使用微球和网状导电层来实现优异的抗反射效果。 此外,本发明具有制造工艺简单,制造成本低的优点。

    Method for fabricating P-type polycrystalline silicon-germanium structure
    2.
    发明授权
    Method for fabricating P-type polycrystalline silicon-germanium structure 有权
    P型多晶硅锗结构的制造方法

    公开(公告)号:US08557688B2

    公开(公告)日:2013-10-15

    申请号:US13631211

    申请日:2012-09-28

    Abstract: A method for fabricating a P-type polycrystalline silicon-germanium structure comprises steps: forming an aluminum layer and an amorphous germanium layer on a P-type monocrystalline silicon substrate in sequence; annealing the P-type monocrystalline silicon substrate, the aluminum layer and the amorphous germanium layer at a temperature of 400-650° C.; and undertaking an aluminum-induced crystallization process in which germanium atoms of the amorphous germanium layer and silicon atoms of the P-type monocrystalline silicon substrate simultaneously pass through the aluminum layer and then the amorphous germanium layer being induced and converted into a P-type polycrystalline silicon-germanium layer between the P-type monocrystalline silicon substrate and the aluminum layer. The present invention is a simple, reliable and low-cost method to fabricate a P-type polycrystalline silicon-germanium layer on a P-type monocrystalline silicon substrate. In addition, the obtained P-type polycrystalline silicon-germanium layer can convert sunlight of longer wavelengths into electric energy.

    Abstract translation: 一种制造P型多晶硅 - 锗结构的方法包括以下步骤:依次在P型单晶硅衬底上形成铝层和非晶锗层; 在400-650℃的温度下退火P型单晶硅衬底,铝层和非晶锗层; 并进行铝诱导结晶工艺,其中非晶锗层的锗原子和P型单晶硅衬底的硅原子同时通过铝层,然后诱导非晶锗层并转化为P型多晶 硅 - 锗层之间的P型单晶硅衬底和铝层之间。 本发明是在P型单晶硅衬底上制造P型多晶硅 - 锗层的简单,可靠和低成本的方法。 此外,所获得的P型多晶硅 - 锗层可以将较长波长的太阳光转换为电能。

    DYE-SENSITIZED SOLAR CELL WITH HYBRID NANOSTRUCTURES AND METHOD FOR FABRICATING WORKING ELECTRODES THEREOF
    3.
    发明申请
    DYE-SENSITIZED SOLAR CELL WITH HYBRID NANOSTRUCTURES AND METHOD FOR FABRICATING WORKING ELECTRODES THEREOF 审中-公开
    具有混合纳米结构的透明的太阳能电池和用于制造其工作电极的方法

    公开(公告)号:US20130130436A1

    公开(公告)日:2013-05-23

    申请号:US13742977

    申请日:2013-01-16

    Abstract: A dye-sensitized solar cell with hybrid nanostructures comprises a negative-polarity conductive substrate, a metal oxide layer, a positive-polarity conductive substrate and an electrolyte. The metal oxide layer has a plurality of nanoparticles and a plurality of nanotubes. The metal oxide layer and the electrolyte are arranged between the negative-polarity conductive substrate and the positive-polarity conductive substrate. The nanoparticles increase contact area with dye and thus enhance power generation efficiency. The nanotubes increase carrier mobility and thus effectively transfer electricity to electrodes. The solar cell integrates the advantages of nanoparticles and nanotubes and offsets the disadvantages thereof to effectively enhance the photovoltaic conversion efficiency of dye-sensitized solar cells.

    Abstract translation: 具有混合纳米结构的染料敏化太阳能电池包括负极性导电基板,金属氧化物层,正极导电基板和电解质。 金属氧化物层具有多个纳米颗粒和多个纳米管。 金属氧化物层和电解质配置在负极性导电性基板和正极性导电性基板之间。 纳米粒子增加与染料的接触面积,从而提高发电效率。 纳米管增加载流子迁移率,从而有效地将电转移到电极。 太阳能电池集成了纳米管和纳米管的优点,抵消了其缺点,有效提高了染料敏化太阳能电池的光伏转换效率。

    Dye-sensitized solar cell with hybrid nanostructures and method for fabricating working electrodes thereof
    5.
    发明授权
    Dye-sensitized solar cell with hybrid nanostructures and method for fabricating working electrodes thereof 有权
    具有混合纳米结构的染料敏化太阳能电池及其工作电极的制造方法

    公开(公告)号:US09196782B2

    公开(公告)日:2015-11-24

    申请号:US13742977

    申请日:2013-01-16

    Abstract: A dye-sensitized solar cell with hybrid nanostructures comprises a negative-polarity conductive substrate, a metal oxide layer, a positive-polarity conductive substrate and an electrolyte. The metal oxide layer has a plurality of nanoparticles and a plurality of nanotubes. The metal oxide layer and the electrolyte are arranged between the negative-polarity conductive substrate and the positive-polarity conductive substrate. The nanoparticles increase contact area with dye and thus enhance power generation efficiency. The nanotubes increase carrier mobility and thus effectively transfer electricity to electrodes. The solar cell integrates the advantages of nanoparticles and nanotubes and offsets the disadvantages thereof to effectively enhance the photovoltaic conversion efficiency of dye-sensitized solar cells.

    Abstract translation: 具有混合纳米结构的染料敏化太阳能电池包括负极性导电基板,金属氧化物层,正极导电基板和电解质。 金属氧化物层具有多个纳米颗粒和多个纳米管。 金属氧化物层和电解质配置在负极性导电性基板和正极性导电性基板之间。 纳米粒子增加与染料的接触面积,从而提高发电效率。 纳米管增加载流子迁移率,从而有效地将电转移到电极。 太阳能电池集成了纳米管和纳米管的优点,抵消了其缺点,有效提高了染料敏化太阳能电池的光伏转换效率。

    SOLAR CELL WITH ANTI-REFLECTION STRUCTURE AND METHOD FOR FABRICATING THE SAME
    6.
    发明申请
    SOLAR CELL WITH ANTI-REFLECTION STRUCTURE AND METHOD FOR FABRICATING THE SAME 审中-公开
    具有抗反射结构的太阳能电池及其制造方法

    公开(公告)号:US20150162461A1

    公开(公告)日:2015-06-11

    申请号:US14626551

    申请日:2015-02-19

    Inventor: Jian-Yang Lin

    Abstract: A solar cell with an anti-reflection structure comprises a solar cell substrate, a meshed electric-conduction layer formed on one surface of the solar cell substrate, a plurality of microspheres disposed on the meshed electric-conduction layer, and a dielectric layer. The microspheres have a diameter of 0.1-50 μm. The dielectric layer is formed between the meshed electric-conduction layer and the microspheres, and has a thickness smaller than the diameter of the microspheres to make the microspheres protrude from the dielectric layer. The meshed electric-conduction layer is formed via a screen-printing method. The present invention uses the microspheres and the meshed electric-conduction layer to achieve an excellent anti-reflection effect. Further, the present invention has the advantages of a simple fabrication process and a low fabrication cost.

    Abstract translation: 具有防反射结构的太阳能电池包括太阳能电池基板,形成在太阳能电池基板的一个表面上的网状导电层,设置在网状导电层上的多个微球体和电介质层。 微球的直径为0.1-50μm。 介电层形成在网状导电层和微球之间,其厚度比微球的直径小,以使微球从电介质层突出。 网状导电层通过丝网印刷法形成。 本发明使用微球和网状导电层来实现优异的抗反射效果。 此外,本发明具有制造工艺简单,制造成本低的优点。

    Method for manufacturing junction plane of solar cell through aluminum induced crystallization method
    7.
    发明授权
    Method for manufacturing junction plane of solar cell through aluminum induced crystallization method 有权
    通过铝诱导结晶法制造太阳能电池接合面的方法

    公开(公告)号:US08697482B1

    公开(公告)日:2014-04-15

    申请号:US13730021

    申请日:2012-12-28

    Abstract: A method for manufacturing a junction plane of a solar cell through an aluminum induced crystallization method includes steps of: providing a substrate; forming an aluminum film layer on a surface of a first growth area on a back side of the substrate; forming an N-type amorphous silicon layer on a surface of the aluminum film layer and a surface of a second growth area on the back side of the substrate; performing a thermal treatment to allow aluminum to induce the N-type amorphous silicon layer to crystallize and form a P-type polycrystalline silicon layer, such that positions of the aluminum film layer and the P-type polycrystalline silicon layer are switched due to the thermal treatment to allow the P-type polycrystalline silicon layer to be formed between the aluminum film layer and the substrate to form a PN junction plane with the N-type amorphous silicon layer.

    Abstract translation: 通过铝诱导结晶法制造太阳能电池的接合面的方法包括以下步骤:提供基板; 在所述基板的背面的第一生长区域的表面上形成铝膜层; 在所述铝膜层的表面和所述基板的背面的第二生长区域的表面上形成N型非晶硅层; 进行热处理以允许铝诱导N型非晶硅层结晶并形成P型多晶硅层,使得铝膜层和P型多晶硅层的位置由于热而被切换 处理以在铝膜层和衬底之间形成P型多晶硅层,以与N型非晶硅层形成PN结面。

    COMPOSITE DYE-SENSITIZED SOLAR CELL
    8.
    发明申请
    COMPOSITE DYE-SENSITIZED SOLAR CELL 审中-公开
    复合染料敏感型太阳能电池

    公开(公告)号:US20130327401A1

    公开(公告)日:2013-12-12

    申请号:US13965866

    申请日:2013-08-13

    Abstract: A composite dye-sensitized solar cell comprises a conductive substrate, and also a nanoparticle compact layer, a nanotube layer and a nanoparticle scattering layer which are stacked on the conductive substrate sequentially, and further an auxiliary electrode stacked on one side of the nanoparticle scattering layer far away from the conductive substrate, and a composite dye and an electrolyte filled into a space between the conductive substrate and the auxiliary electrode. The composite dye includes at least one short-wavelength light absorption dye and at least one long-wavelength light absorption dye. The nanoparticle compact layer can increase the contact area with the composite dye and further enhance the power generation efficiency. The nanotube layer can transmit the generated electric energy to the external electrodes efficiently. The composite dye can absorb light with different wavelength ranges. Therefore is effectively improved the photovoltaic conversion efficiency of the dye-sensitized solar cell (DSSC).

    Abstract translation: 复合染料敏化太阳能电池包括依次层叠在导电性基板上的导电性基板和纳米粒子致密层,纳米管层和纳米粒子散射层,还具有层叠在纳米粒子散射层一侧的辅助电极 远离导电性基板,以及填充到导电性基板和辅助电极之间的空间的复合染料和电解质。 复合染料包括至少一种短波长光吸收染料和至少一种长波长吸光染料。 纳米颗粒致密层可以增加与复合染料的接触面积,进一步提高发电效率。 纳米管层可以有效地将产生的电能传递到外部电极。 复合染料可以吸收不同波长范围的光。 因此有效地提高了染料敏化太阳能电池(DSSC)的光电转换效率。

Patent Agency Ranking