Abstract:
Une cellule de memoire programmable a trois portes comprend un element de memoire a seuil variable (Q2) entre deux elements de portes d'acces (Q1, Q3), formant ensemble un circuit en serie dont l'etat conducteur peut etre modifie par n'importe lequel des elements en serie. Chaque cellule possede des lignes (VW, VM, VR) pour avoir acces individuellement aux trois electrodes de portes, en plus des connexions de lignes (VB, VS) aux extremites opposees du circuit conducteur forme par les elements en serie. L'independance electrique de la ligne de memoire (VM), isole effectivement les hautes tensions associees a l'effacement et a l'ecriture de l'element de memoire (Q2) des signaux logiques de basse tension sur les autres lignes. Dans une forme de realisation, un transistor de seuil modifiable (Q2) est connecte en serie entre deux transistors a effet de champ (Q1, Q3), l'un d'eux commandant l'adressage de la cellule et l'autre actionnant le mode de lecture. La cellule est effacee avec une impulsion de haute tension sur la ligne de memoire (VM). La programmation ulterieure de la cellule est definie par les etats de tension sur les lignes de textes (VW ) et de bits (VB) du transistor d'adressage (Q1) coincidant dans le temps avec une impulsion de polarite opposee, de duree plus courte, sur la ligne de memoire (VM). Des electrodes de portes electriquement isolees (4, 6, 7) des trois transistors (Q1, Q2, Q3) commandent la conductivite du canal en segments. Les cellules peuvent etre groupees en reseau, tout en gardant l'independance de la ligne de memoire de haute tension (VM) et la flexibilite des adresses individuelles de rangees et de colonnes. L'organisation des cellules en reseaux logiques programmables est egalement decrite.
Abstract:
A low voltage write non-volatile MNOSFET memory device preferably of n-channel type has a first relatively highly doped p+ channel region (27) and a second underlying less highly doped p- region (28). The device is written to a "1" state by applying a low voltage (+12V) to the gate (21) and simultaneously applying a suitable voltage to the source (12) and/or the drain (13) to induce avalanche breakdown in the channel.
Abstract:
A volatile/non-volatile RAM cell employing a bistable multivibrator with non-volatile, alterable-threshold capacitors (307, 308) coupled to the output terminals (A, B) thereof to provide backup data storage in a power-down situation The non-volatile capacitors each have a non-alterable section (307A, 308A) and an alterable section (307B, 308B), the non-alterable section having either a depletion or an enhancement threshold. The RAM cell incorporates both polysilicon resistors (305, 306) and enhancement mode devices (309, 310) in the load circuits of each cell to produce boot-strapping of the voltage on one of the multivibrator terminals (A, B) during a volatile/non-volatile write operation. A non-inverted restore of digital information to the bistable multivibrator is accomplished by simultaneous application of a step voltage to the cell power line (123A) and a restore pulse to the gate (307C, 308C) of the non-volatile capacitors. An alternative inverted restore for a cell utilizing depletion thresholds in the non-alterable sections (307A, 308A) of the non-volatile capacitors, (307, 308) involves grounding the gate electrode (307C, 308C) of the non-volatile capacitors to restore the previously written information to the multivibrator. A data processing system employing the volatile/non-volatile RAM system with a single five volt power supply (40) and a write/restore/erase signal generator (50), all implemented in five volt, n-channel silicon-insulator-silicon (SIS) device technology, is shown.
Abstract:
A signal generator (50A) for producing, from a low voltage power supply, relatively large magnitude pulse signals of opposite polarity to a device (10) input terminal having a parallel resistor (11)-capacitor (12) circuit connection to a reference voltage is disclosed. A voltage multiplier (52) powered by the low voltage power supply provides a multiplied voltage output which is stored on a first large capacitor (58). A second large capacitor (59) has one terminal connected to the device (10) input terminal. To produce the large, opposite polarity signals, a control circuit means operates in conjunction with the voltage multiplier (52) and the first capacitor (58) to produce a predetermined sequence of voltages on the second terminal of the second capacitor (59).
Abstract:
A three gate programmable memory cell comprised of a variable threshold memory element medial of two access gate elements, together forming a series path whose conductive state can be altered by any one of the series elements. Each cell has lines for individually accessing the three gate electrodes, in addition to line connections to opposite ends of the conductive path formed by the elements in series. In one form, an alterable threshold transistor is connected in series between two field effect transistors, one of the two controlling cell addressing and the other actuating the read mode. The cell is erased with a high voltage pulse on the memory line. Subsequent programming of the cell is defined by the voltage states on the word and bit lines of the addressing transistor in time coincidence with an opposite polarity, shorter duration pulse on the memory line. The logic state stored in the cell is defined by the presence or absence of a conductive path through the cell when all three gates are biased to their read mode levels. A unitary configuration of the cell includes a single substrate, with a channel defined between doped node regions. Electrically isolated gate electrodes of the three transistors are symmetrically disposed adjacent each other over the channel to control its conductivity in segments. The cells are amenable to being grouped in arrays, while retaining the independence of the high voltage memory line and the flexibility of individual row and column addresses.