Abstract:
Systems and techniques for cache management are disclosed that provide improved cache performance by prioritizing particular storage stripes for cache flush operations. The systems and techniques may also leverage features of the storage devices to provide atomicity without the overhead of inter-controller mirroring. In some embodiments, the systems and techniques include a storage controller that stores data in a cache. The data is associated with one or more sectors of a storage stripe that is defined over plurality of storage devices. The storage controller identifies a locality of dirty sectors of the one or more sectors, classifies the storage stripe into a category based on the locality, provides a category ordering of the category relative to at least one other category, and flushes the storage stripe from the cache to the plurality of storage devices according to the category ordering.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.
Abstract:
Technology is disclosed for performing background initialization on protection information enabled storage volumes or drives. In some embodiments, a storage controller generates multiple I/O requests for stripe segments of each drive (e.g., disk) of multiple drives of a RAID-based system (e.g., RAID-based disk array). The I/O requests are then sorted for each of the drives according to a pre-determined arrangement and initiated in parallel to the disks while enforcing the pre-determined arrangement. Sorting and issuing the I/O requests in the manner described herein can, for example, reduce drive head movement resulting in faster storage subsystem initialization.