Abstract:
PROBLEM TO BE SOLVED: To produce a strip having the customer-specified characteristic by using single roll profiles for casting rolls of a substantially constant throughput, producing the extensively different cast strip thickness, maintaining a predetermined as-cast fine structure in a cast strip, and performing the decoration-control as expected firmly by the subsequent cooling system. SOLUTION: In a twin roll strip caster, by determining a target depth of the casting pool and a target speed of the casting rolls to operate at them, the thickness of the as-cast strip is controlled. The as-cast strip may be cast to the customer-specified thickness or may be subsequently rolled to a customer-specified thickness. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
A model-based strategy is provided for determining casting roll operating temperature in a continuous thin strip casting process. A first temperature sensor produces a first temperature signal indicative of the temperature of cooling liquid supplied to the casting rolls and a second temperature sensor produces a second temperature signal indicative of the temperature of cooling liquid temperature exiting the casting rolls. A computer determines a heat flux value as a function of the first and second temperature signals, and computes the operating temperature of the casting rolls as a function of the heat flux value, the second temperature signal and a number of constants defined by fixed-valued operating parameters of the continuous thin strip casting process. A control strategy is also provided to modify one or more operating parameters of the continuous thin strip casting process as a function of the casting roll temperature.
Abstract:
An apparatus for continuously casting thin strip includes a caster having a pair of casting rolls having a nip there between capable of delivering cast strip downwardly from the nip and an first enclosure capable of forming a protective atmosphere into which the strip can be formed in loop to extend over a plurality of rollers into pinch rolls with the strip having a strain of less than 0.4 %, which may be provided by a plurality of rollers at entry of the strip into the pinch rolls to carry the strip into the pinch rolls, with at least a first entry roller having a diameter between 200 and 650 millimeters and being below a majority of other rollers.
Abstract:
A thin cast steel strip and method of making thereof with improved resistance to microcracking, where the steel strip is produced by continuous casting and contains a carbon content between about 0.010% and about 0.065% by weight, less than 5.0% by weight chromium, at least 70 ppm of total oxygen and between 20 and 70 ppm of free oxygen, and manganese to sulfur ratio greater than about 250. The carbon content in the cast strip may be below about 0.035%, less than 0.005% by weight titanium, and the average manganese to silicon ratio in the strip produced may be greater than 3.5. The carbon content may be less than 0.035%, the casting speed less than 76.68 meters per minute, and the tundish temperature of the molten metal is maintained below 1612° C. (2933.7° F.).
Abstract:
Twin roll casting of thin steel strip. Molten steel is introduced between a pair of cooled casting rolls to form a casting pool from which steel solidifies on the rolls to produce a solidified strip. The molten steel has a total oxygen content in the range 100ppm to 250ppm and contains metal oxide inclusions comprising any one or more of MnO, SiO2 and Al2O3 distributed throughout the steel at an inclusion density in the range 2gm/cm3 to 4gm/cm3. Typically the inclusions range in size between 2 and 12 microns. The cast strip has a thickness of less than 5mm and contains solidified metal oxide inclusions distributed such that the regions of the strip contain solidified inclusions to a per unit area density of at least 120 inclusions/mm2.
Abstract:
Apparatus and method for continuously casting metal strip includes a pair of casting rolls having casting surfaces with a center portion, edge portions each having average surface roughness between 3 and 7 Ra, and intermediate portion between each edge portion and the center portion, the center portion average surface roughness between 1.2 and 4.0 times the edge portion surface roughness, and the intermediate portions average surface roughness between that of the edge and center portions. The surface roughness of the center portion is tapered across its width, and may be tapered across its width is in stepped zones. The center portion may have surface roughness varied across the surface to correspond to a desired variation in metal shell thickness across the cast strip. The center portion may be at least 60% of the casting roll width, and each edge portion may be up to 7% of the casting roll width.
Abstract:
A method of controlling in a twin roll strip caster the thickness of as-cast strip by determining and operating at a target depth of the casting pool and a target speed of the casting rolls. The as-cast strip may be cast to a customer-specified thickness or may be subsequently rolled to a customer-specified thickness.
Abstract:
A plain carbon steel strip (12) is continuously cast in a twin roll caster (11) and passes to a run out table 17 on which it is subjected to accelerated cooling by means of cooling headers (18) whereby it is cooled to transform the strip from austenite to ferrite at a temperature range between 850 °C and 400 °C at a cooling rate of not less than 90 °C/sec, such that the strip has a yield strength of greater than 450MPa. The strip after casting and before cooling is passed through a hot rolling mill to reduce the thickness of strip by at least 15% and up to 50%.