Abstract:
A semiconductor device and a method of making the same. The device includes a semiconductor substrate having an AlGaN layer on a GaN layer. The device also includes first contact and a second contact. The average thickness of the AlGaN layer varies between the first contact and the second contact, for modulating the density of an electron gas in the GaN layer between the first contact and the second contact.
Abstract:
Disclosed is a transistor (100, 200, 300) having a first region (120, 320) of a first conductivity type for injecting charge carriers into the transistor and a laterally extended second region (140, 340) of the first conductivity type having a portion (142, 342) including a contact terminal (145, 345) for draining said charge carriers from the transistor, wherein the first region is separated from the second region by an intermediate region (130, 330) of a second conductivity type defining a first p-n junction with the first region and a second p-n junction with the second region, wherein the laterally extended region separates the portion from the second p-n junction, and wherein the transistor further comprises a substrate (110) having a doped region (112) of the second conductivity type, said doped region being in contact with and extending along the laterally extended second region and a further contact terminal (115) connected to the doped region for draining minority charge carriers from the laterally extended second region. An amplifier circuit and IC including such transistors are also disclosed.
Abstract:
A semiconductor device comprising: a substrate having: a first terminal region; a second terminal region; a first extension region that extends from the first terminal region towards the second terminal region; a second extension region that extends from the second terminal region towards the first terminal region; a channel region between the first and second extension regions; a gate conductor that overlies the channel region of the substrate, the gate conductor configured to control conduction in the channel region; a first control conductor that overlies at least a portion of the first extension region, the first control conductor configured to control conduction in the first extension region; and a second control conductor that overlies at least a portion of the second extension region, the second control conductor configured to control conduction in the second extension region, wherein the first and second control conductors are electrically isolated within the semiconductor device from the gate conductor.
Abstract:
Aspects of the present disclosure are directed toward apparatuses, methods, and systems that include at least two regions of a first semiconductor material and at least two regions of second semiconductor material that are alternatively interleaved. Additionally, the apparatuses, methods, and systems include a first electrode and a second electrode that can operate both as a source and drain. The apparatuses, methods, and systems also include a first gate electrode having multiple portions on the first semiconductor material and a second gate electrode having multiple portions on the second semiconductor material that bidirectionally control current flow between the first electrode and the second electrode.
Abstract:
An integrated heat sink array is introduced in SOI power devices having multiple unit cells, which can be used to reduce the temperature rise in obtaining more uniform temperature peaks for all the unit cells across the device area, so that the hot spot which is prone to breakdown can be avoided, thus the safe operating area of the device can be improved. Also the array sacrifice less area of the device, therefore results in low Rdson.
Abstract:
The disclosure relates to bipolar transistor devices and a method of fabricating the same. The device comprises a field plate, in an isolation region adjacent to a base-collector junction of said active region. The isolation region comprises a gate terminal arranged to be biased independently of a collector, base or emitter terminal of said transistor.