Abstract:
A method and system are presented for the combustion of hydrogen sulfide mixed with other gases for simultaneous recovery of sulfur and energy from hydrogen sulfide at higher efficiency. The amounts and velocity of the hydrogen sulfide into the reactor is selected in such a way that it is not possible to burn the hydrogen sulfide in a normal thin reaction zone during its combustion that normally prevails in almost all flame combustion devices. The injected hydrogen sulfide gas is mixed in a thermal reactor with fresh air and hot active combustion gases in the reactor on account of internal jet pump effect and self-induced entrainment. The reaction is exothermic so that the chemical energy present in hydrogen sulfide is recovered together with the sulfur that is tapped off from he process. The reactor process can also be used for other gas and chemicals that require controlled reactor thermo-chemical environment. Various reactors are shown capable of controlling the formation of a thermal distribution flow pattern based on the position and position and direction (and other factors) regarding fluid introduction within a combustion chamber of the reactors.
Abstract:
A method and system are presented for the combustion of hydrogen sulfide mixed with other gases for simultaneous recovery of sulfur and energy from hydrogen sulfide at higher efficiency. The amounts and velocity of the hydrogen sulfide into the reactor is selected in such a way that it is not possible to burn the hydrogen sulfide in a normal thin reaction zone during its combustion that normally prevails in almost all flame combustion devices. The injected hydrogen sulfide gas is mixed in a thermal reactor with fresh air and hot active combustion gases in the reactor on account of internal jet pump effect and self-induced entrainment. The reaction is exothermic so that the chemical energy present in hydrogen sulfide is recovered together with the sulfur that is tapped off from he process. The reactor process can also be used for other gas and chemicals that require controlled reactor thermo-chemical environment. Various reactors are shown capable of controlling the formation of a thermal distribution flow pattern based on the position and position and direction (and other factors) regarding fluid introduction within a combustion chamber of the reactors.