Abstract:
Mass spectrometry cells include one or more interleaved magnetostatic and electrostatic lenses. In some examples, the electrostatic lenses are based on electrical potentials applied to magnetostatic lens pole pieces. In other alternatives, the electrostatic lenses can include conductive apertures. Applied voltages can be selected to trap or transport charged particles, and photon sources, gas sources, ion sources, and electron sources can be provided for various dissociation processes.
Abstract:
A method is described for space-focusing ions accelerated to constant momentum that includes accelerating ions in an electric field having a negative gradient in the direction the ions are accelerated. A single stage ion accelerator (400, 410) that provides a decreasing electric field along the ion optical axis also is disclosed. Combined with a detector (414, 418) placed onto a space-focal plane where ions are focused after being accelerated, the accelerator provides a simple, sensitive time-of-flight mass spectrometer (416). In combination with an energy analyzer (410), the disclosed decreasing electric field ion accelerator provides a mass analyzer (416) that can measure constant momentum spectra, and that may be combined with existing mass spectrometers to enable a number of novel mass spectrometric methods.
Abstract:
An electron source for electron-induced dissociation in an RF-free electromagnetostatic cell for use installation in a tandem mass spectrometer is provided. An electromagnetostatic electron-induced dissociation cell may include at least one magnet having an opening disposed therein and having a longitudinal axis extending through the opening, the magnet having magnetic flux lines associated therewith, and an electron emitter having an electron emissive surface comprising a sheet, the emitter disposed about the axis at a location relative to the magnet where the electron emissive surface is substantially perpendicular to the magnetic flux lines at the electron emissive surface.
Abstract:
Mass spectrometry cells include one or more interleaved magnetostatic and electrostatic lenses. In some examples, the electrostatic lenses are based on electrical potentials applied to magnetostatic lens pole pieces. In other alternatives, the electrostatic lenses can include conductive apertures. Applied voltages can be selected to trap or transport charged particles, and photon sources, gas sources, ion sources, and electron sources can be provided for various dissociation processes.
Abstract:
An electron source for electron-induced dissociation in an RF-free electromagnetostatic cell for use installation in a tandem mass spectrometer is provided. An electromagnetostatic electron-induced dissociation cell may include at least one magnet having an opening disposed therein and having a longitudinal axis extending through the opening, the magnet having magnetic flux lines associated therewith, and an electron emitter having an electron emissive surface comprising a sheet, the emitter disposed about the axis at a location relative to the magnet where the electron emissive surface is substantially perpendicular to the magnetic flux lines at the electron emissive surface.