Abstract:
Disclosed herein are embodiments of compounds that can be used to target glutathione to various target sites, such as cells, mitochondria, and other organelles. Also disclosed herein are embodiments of methods for making and using the compounds. In particular disclosed embodiments, the compounds can be used to treat, ameliorate, and/or prevent diseases or conditions associated with low or reduced glutathione levels, as well as other types of diseases/conditions.
Abstract:
Mass spectrometry cells include one or more interleaved magnetostatic and electrostatic lenses. In some examples, the electrostatic lenses are based on electrical potentials applied to magnetostatic lens pole pieces. In other alternatives, the electrostatic lenses can include conductive apertures. Applied voltages can be selected to trap or transport charged particles, and photon sources, gas sources, ion sources, and electron sources can be provided for various dissociation processes.
Abstract:
Disclosed herein are embodiments of compounds that can be used to target glutathione to various target sites, such as cells, mitochondria, and other organelles. Also disclosed herein are embodiments of methods for making and using the compounds. In particular disclosed embodiments, the compounds can be used to treat, ameliorate, and/or prevent diseases or conditions associated with low or reduced glutathione levels, as well as other types of diseases/conditions.
Abstract:
Disclosed herein are embodiments of compounds that can be used to target glutathione to various target sites, such as cells, mitochondria, and other organelles. Also disclosed herein are embodiments of methods for making and using the compounds. In particular disclosed embodiments, the compounds can be used to treat, ameliorate, and/or prevent diseases or conditions associated with low or reduced glutathione levels, as well as other types of diseases/conditions.
Abstract:
Mass spectrometry cells include one or more interleaved magnetostatic and electrostatic lenses. In some examples, the electrostatic lenses are based on electrical potentials applied to magnetostatic lens pole pieces. In other alternatives, the electrostatic lenses can include conductive apertures. Applied voltages can be selected to trap or transport charged particles, and photon sources, gas sources, ion sources, and electron sources can be provided for various dissociation processes.