Abstract:
An organic electroluminescent device includes a substrate, a first electrode arranged on the substrate, and a functional organic layer arranged on the first electrode. The functional organic layer is adapted to emit electromagnetic radiation A second electrode is arranged on the functional organic layer. The functional organic layer includes a matrix material and an emitter material. The emitter material is neutral or ionically charged. The emitter material is selected from the group of ionic transition metal complex, neutral transition metal complex, polymer emitter and combinations thereof, wherein the matrix material comprises at least one ionic charge carrier transporting material, wherein the ionic charge carrier transporting material is selected from the group of electron-transporting material, hole-transporting material, ambipolar-transporting material and combinations thereof, and wherein the at least one ionic charge carrier transporting material is ionically charged.
Abstract:
An organic electroluminescent device includes a substrate, a first electrode arranged on the substrate, and a functional organic layer arranged on the first electrode. The functional organic layer emits electromagnetic radiation. A second electrode is arranged on the functional organic layer. The functional organic layer includes at least one ionic component and one emitter material having a band gap. The emitter material is selected from the group of ionic transition metal complex, neutral transition metal complex, polymer emitter and combinations thereof. The organic electro-luminescent device is adapted to work in two modes, wherein a pre-biasing mode comprises applying a first voltage being a constant or pulsed value less than and/or equal to the band gap to the first and the second electrode.
Abstract:
Various embodiments may relate to a device for coating substrates. The device includes a reaction space element configured to arrange substrate portions of one or more substrates as opposite outer walls of a reaction space, and a material feed element configured to introduce one or more materials into the reaction space for coating surfaces of the substrate portions which are opposite one another in the reaction space. Various embodiments further relate to a method for coating substrates.
Abstract:
Various embodiments may relate to a device for the surface treatment of a substrate, including a processing head, which is mounted rotatably about an axis of rotation, and which comprises multiple gas outlets, which are at least partially implemented on a radial outer edge of the processing head.
Abstract:
An illuminant with at least two LEDs mounted on mutually opposite sides of a support plate and a reflection surface formed as a concave mirror, in which concave mirror the LEDs are arranged, wherein a housing part of the illuminant made of a transparent housing material is provided, which housing part at the same time forms an in relation to the main propagation direction lateral external surface of the illuminant and supports a reflecting layer forming the reflection surface at an internal surface opposite to the external surface.
Abstract:
A lamp includes a tubular glass bulb with open end sides, at least one elongate carrier, inserted into the glass bulb, for at least one light strip, at least one elastic diffuser layer which is introduced into the glass bulb, and two bases which are fitted onto the open end sides of the glass bulb. The at least one light strip has a strip-shaped circuit board with a front-side conduction structure and with at least one semiconductor light source which is electrically connected thereto. The conduction structure is electrically connected to at least one of the bases. The at least one diffuser layer arches over the at least one semiconductor light source and the at least one conduction structure in a contact-free fashion at least over a length between the bases. The at least one diffuser layer is latched to the at least one carrier.
Abstract:
A lamp includes a tubular glass bulb with open end sides, at least one elongate carrier, inserted into the glass bulb, for at least one light strip, at least one elastic diffuser layer which is introduced into the glass bulb, and two bases which are fitted onto the open end sides of the glass bulb. The at least one light strip has a strip-shaped circuit board with a front-side conduction structure and with at least one semiconductor light source which is electrically connected thereto. The conduction structure is electrically connected to at least one of the bases. The at least one diffuser layer arches over the at least one semiconductor light source and the at least one conduction structure in a contact-free fashion at least over a length between the bases. The at least one diffuser layer is latched to the at least one carrier.