Abstract:
A regenerative elevator drive device, a method for buffering energy of a regenerative elevator drive device, and an elevator system are disclosed. The regenerative elevator drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The regenerative drive may further include a direct current (DC) link bridging the inverter and the converter, the DC link including a first capacitor bridging the inverter and the converter and a second capacitor in parallel with the first capacitor. The regenerative elevator drive device may be a multi-level regenerative drive device.
Abstract:
A regenerative drive (30) and method for providing power from such to at least one auxiliary power supply (41, 43) is disclosed. The drive may include a converter (32) and an inverter (34) connected by a DC bus (33), and a controller (54) configured to apply at least one of unipolar modulation and bipolar modulation to the converter (32) and the inverter (34), and to provide about half of the output voltage across the upper portion (130) of the DC bus (33) and about half of the output voltage across the lower portion (136) of the DC bus (33), when the upper and lower portions (130, 136) of the DC bus (33) are unevenly loaded. A first auxiliary power supply (41) may be connected to one of the upper and lower portions (130, 136) of the DC bus (33) and may receive power from the multilevel regenerative drive (30).
Abstract:
A regenerative drive device and a method for configuring the DC link of a regenerative drive device are disclosed. The multilevel regenerative drive device may include an inverter having a plurality of power components and a converter having a plurality of power components. The multilevel regenerative drive device may also include a direct current (DC) link bridging the inverter and the converter, the DC link including a capacitor, an inverter neutral point, and a converter neutral point independent of the inverter neutral point. Alternatively, the inverter neutral point and the converter neutral point may be connected.
Abstract:
An exemplary power supply assembly includes a drive device having a bus capacitor. A switch associated with an input side of the drive device selectively connects the drive device to a power supply. An inductor has an impedance that limits an amount of current supplied to the bus capacitor during an initial charging of the bus capacitor when the switch connects the input side of the drive device to the power supply. A restrictive circuit portion dampens a resonance effect of the inductor. The restrictive circuit portion has a resistance that allows the bus capacitor to charge quickly. The impedance of the inductor has a more significant effect on how quickly the bus capacitor charges than an effect of the resistance. A dampening factor of the restrictive circuit controls a voltage of the bus capacitor during the charging of the bus capacitor.
Abstract:
An exemplary power supply assembly includes a drive device having a bus capacitor. A switch associated with an input side of the drive device selectively connects the drive device to a power supply. An inductor has an impedance that limits an amount of current supplied to the bus capacitor during an initial charging of the bus capacitor when the switch connects the input side of the drive device to the power supply. A restrictive circuit portion dampens a resonance effect of the inductor. The restrictive circuit portion has a resistance that allows the bus capacitor to charge quickly. The impedance of the inductor has a more significant effect on how quickly the bus capacitor charges than an effect of the resistance. A dampening factor of the restrictive circuit controls a voltage of the bus capacitor during the charging of the bus capacitor.